The importance of ancient observations in the detection of the Yarkovsky effect

F. Spoto^{1,2}, P. Tanga¹, B. Carry^{1,2*}

Observatoire de la Côte d'Azur, Laboratoire Lagrange¹ Observatoire de Paris, IMCCE²

NAROO CIAS Workshop Atelier CIAS 2019

Observatoire de Paris, Meudon 2019, April 01-03

The Yarkovsky effect

- Anisotropic thermal emission
- Secular evolution of the semi-major axis
- Long period of time

Applications

- NEOs and meteorite transport
- Physical properties (densities and spin)
- Family dispersion and age

2. The Yarkovsky effect

- Main goal: having the largest possible sample of detections
 - Earth crossers: impact probabilities.
 - Main Belt: astronomical clock _
- Challenge: detections
 - Depend on **physical properties**:
 - Thermal inertia, diameter, spin, ...
 - Not measured on small bodies
 - New approach: astrometry (Farnocchia et al. 2013)

2. The Yarkovsky effect

- Main goal: having the largest possible sample of detections
 - Earth crossers: impact probabilities
 - Main Belt: astronomical clock

• Challenge: detections

- Depend on **physical properties**:
 - Thermal inertia, diameter, spin, ...
 - Not measured on small bodies
- New approach: astrometry (Farnocchia et al. 2013)

- 87 detections for Earth crossers (Del Vigna et al. 2018)
 - Impact probabilities + **density** for Bennu
 - Validated in-situ by OSIRIS-REx (Chesley et al. 2014, Spoto et al. 2014)

2. The Yarkovsky effect - dreams come true

- Main goal: having the largest possible sample of detections
 - Earth crossers: impact probabilities
 - Main Belt: astronomical clock
- Challenge: detections
 - Depend on **physical properties**:
 - Thermal inertia, diameter, spin, ...
 - Not measured on small bodies
 - New approach: astrometry (Farnocchia et al. 2013)

Mars Earth

- 22 new detections + densities: (Spoto et al. 2019, submitted)
 - 20 Earth crossers
 - Towards the main belt

- 87 detections for Earth crossers (Del Vigna et al. 2018)
 - Impact probabilities + **density** for Bennu
 - Validated in-situ by OSIRIS-REx (Chesley et al. 2014, Spoto et al. 2014)

Gaia Data Release 2

2018, April 25th

Gaia DR2 – Solar System Objects

14 099 Asteroids

- 81 NEAs
- 2 TNOs
- 14 016 MBAs (including Trojans)

Our sample

- 70 asteroids
 (13 MBAs, 1 MC, 56 NEAs)
- D < 10 km
- Orbital uncertainty < 500 m

Gaia observations

Gaia focal plane

- SM: source detection
- AF: astrometric field (CCDs)
- BP/RP: photometry
- RVS: spectroscopy

<u>Transits</u>

- 9 observations
- 50 second

Asteroid observation accuracy

<u>Gaia DR2 (Gaia Collaboration, Spoto et al. 2018)</u>

- 1 977 702 observations
- Accuracy between 2 and 5 mas (V~20.5)
- Accuracy at the sub-mas level (bright objects)

<u>MPC</u>

- 200 millions of observations (mid Feb. 2019)
- Typical accuracy: between **400** and **500 mas**

Debiasing

Observations

- ~ 200 millions of observations
- ~ 180 millions of observations of numbered objects
- ~ 20 millions of observations of unnumbered objects

(Farnocchia et al. 2015)

Debiasing

Observations

- ~ 200 millions of observations
- ~ 180 millions of observations of numbered objects
- ~ 20 millions of observations of unnumbered objects

<u>Catalogs</u>

• 49 catalogs

Work in progress! (See P. Tanga)

(Farnocchia et al. 2015)

Weighting scheme

<u>Catalogs</u>

- ~ 17 millions of observations reduced with Gaia DR1
- ~ 5 millions of observations reduced with Gaia DR2

02/04/2019, NAROO meeting, Meudon

Weighting scheme

- For each catalog ٠
- For each year

Observatory 568 Mauna Kea

02/04/2019, NAROO meeting, Meudon

14/19

Results - detections

20 new detections

- 15 new + 3 already known (2062) Aten, (1685) Toro and (2100) Ra-Shalom
- S/N > 3

Results - densities

From Yarkovsky detections to densities:

$$\begin{aligned} \frac{da}{dt} &= \frac{da}{dt} \Big|_{\text{diurnal}} + \frac{da}{dt} \Big|_{\text{seasonal}} \\ &= \frac{(1-A)\pi D^2 S_{\odot}}{9mc\Delta^2} \left[W_n \sin^2 \gamma - 2W_\omega \cos \gamma \right] \end{aligned}$$
with
$$A &= p_V \cdot q \approx p_V (0.29 + 0.684G),$$

$$W_v \approx \frac{0.5\Theta_v}{1 + \Theta_v + 0.5\Theta_v^2},$$

$$\Theta_v &= \frac{\Gamma \sqrt{v}}{\epsilon \sigma_B T_\star^3}, \text{ with } v \text{ in } \{n, \omega\}, \text{ and}$$

$$T_\star^4 &= \frac{(1-A)S_{\odot}}{\eta \sigma_B \epsilon \Delta^2} \end{aligned}$$

(Adapted from Farinella et al. 1998 and Vokrouhlický et al. 2015)

- Taxonomic class, rotation period and diameter are known for all the asteroids
- When the **albedo is missing**, we assume the **average albedo** from its **taxonomic class**
- When the **thermal inertia is missing**, we assume **200 ± 40 J m⁻² s^{-1/2} K⁻¹** (Delbo et al. 2007)
- When the obliquity is missing, we assume a flat distribution between 90° and 180°
- Monte Carlo approach to estimate the mass of the asteroids:
 - we evaluate 100 000 times the equation, taking randomly each parameter

Asteroid number	A ₂	S/N	da/dt	Density
	10 ⁻¹⁵ αυ/d ²		10⁻⁴ au/Myr	kg m⁻³
2062	-10.85 +/- 0.41	26.74	-4.84 +/- 0.18	2076 +/- 436
5381	8.55 +/- 0.41	20.64	4.09 +/- 0.19	564 +/- 343
66391	-4.75 +/- 0.25	19.17	-4.78 +/- 0.25	3249 +/- 439
3200	-4.11 +/- 0.35	11.73	-7.45 +/- 0.63	1186 +/- 171
161989	-9.28 +/- 0.94	9.92	-3.90 +/- 0.54	2835 +/- 1020

• 18 Yarkovsky detections and density computation

- 15 new + 3 already known (better estimation)
- Main limitation:
 - Small sample of objects from Gaia DR2
 - Little statistics

The best is yet to come...

Thousands of ultra-accurate orbits

Thousands of ultra-accurate orbits

Lost objects

NEODYS Near Earth Objects - Dyn	-2 namic Site	yyyy • mm • dd MJD Go to NEA ▶ 2019-04-01 20:21:04 UTC 58574 MJD ▲				
Home Objects	Observatories Search Risk page NEA elements Related sites Info & Credits					
		Realing				
		[ուտի] և				
5	Last updated: 2019-04-01 14:12	:49 UTC				
Intro	For some of these 156 NEAs, it would be possible to organize Virtual Impactors destruction campaigns.	See the				
Risk list	Spaceguard Central Node page for indications.					
Past impactors	[All Special Observable Possible recovery <u> Lost</u> Small]					
Imminent impactors	Designation H PS TS Status Notes					
References	1979XB II 18.5 -3.28 0 Lost					
Notes	1994GK 1 24.2 -5.01 0 Lost					
	1996TC1 1 23.9 -5.31 0 Lost					
	1999RZ31 II 23.8 -5.86 00 Lost					
	2000SB45 II 24.3 -4.65 0 Lost					
	2001CA21 II 18.8 -4.92 00 Lost					
	2001FB90 1 19.9 -7.23 0 Lost					
	2001SB170 II 22.4 -6.14 00 Lost					
	2001YN2 1 25.0 -7.54 0 Lost					
	2002EM7 11 24.4 -8.10 0 Lost					
	2002GM5 II 21.4 -5.09 0 Lost					
	2002MN II 23.3 -5.13 0 Lost					
	2002RB182 II 22.9 -5.26 0 Lost					
	2002VU17 II 24.8 -5.53 0 Lost					
	2003UQ25 II 24.2 -6.34 0 Lost					
	2004ME6 II 23.1 -7.38 0 Lost					
	2005ED224 11 24.0 -4.53 0 Lost					
	2005EL70 11 24.0 -5.49 0 Lost					
NEODys ' Pick page !	2005GQ33 11 23.8 -7.96 0 Lost	Contact -				