

DANCeRS

DANCe

Main Objectives

Derive high precision astrometry over entire associations down to the substellar and planetary mass regimes

Scientific goals

1.Detailed census of an association (identifying co-moving members and rejecting contaminants)

2. Study of internal dynamics and dynamical evolution as a function of mass, age, environment.

3.Compare with numerical simulation

Requirements

1.astrometric accuracy better than 1 km/s for comparison with numerical simulations

2.cover large areas of the sky including entire associations

Challenge

1 km/s at 200 pc = 1 mas/yr

Strategy

Retrieval of wide field observations performed over the past 15 years from public archives

New observations

Fully automated multi-epoch, multi-instrument, multi-wavelength analysis

Dancefloor: The Pleiades

~17,000 images ~10¹² pixels ~5TB ~10⁸ detections

~10⁷ sources

Processing using AstrOmatic software

SExtractor: source extraction

- SExtractor program originally developed to extract sources from Schmidt plate scans (MAMA microdensitometer at the Paris observatory) in <u>a fully</u> <u>automated way</u>
 - Allow to process very large images (up to 2GB) on a regular workstation (16MB of memory!) in one go.
 - Soon modified to allow processing of CCD data
 - First public SExtractor release in 1994
- 1995 and onward: software developed and released in the framework of various wide-field digital data processing projects (LDAC, EIS, TERAPIX, DESDM)
 - Surveys set technical requirements
 - Public, « open » approach and user feedback:
 - Large user base helps improve software portability and robustness
 - Give precious hints in choosing generic algorithms that will work with most kinds of wide-field image data.
- **1998:** SExtractor 2
- 2009: Astr Omatic website online
 - All the code mentioned here is open source and available for download at astromatic.net
- 2012: SExtractor 3

PSF modeling and fitting

- PSF modeling and fitting in SExtractor operating in an experimental way since 2001 (Cuillandre et al. 2001, Kalirai et al. 2001)
- Fitting routine can fit groups of blended stars
- Much work went into handling arbitrary PSFs and undersampled data.

Modeling undersampled PSFs

Reconstructing the NICMOS PSF by solving in Fourier space (*Lauer 1999*)

Problem: noise is seldom stationary on astronomical images!

Aliased portion of the image spectrum

PSFEx: solving in direct space

 A resampling kernel h, based on a compact interpolating function (Lanczos3), links the "super-tabulated" PSF to the real data: the pixel j of star i can be written as

$$P_{ij} = a_i \sum_{b} \sum_{k} h_i (\mathbf{x}_k - \mathbf{x}_j) c_b \psi_{bk}$$

- The c_b 's are derived using a <u>weighted</u> χ^2 minimization.
- The a_i 's are obtained from "cleaned" aperture magnitude measurements
- Regularisation required for highly undersampled PSFs (FWHM <1.5 pixel)

- ℓ^2 norm (Tikhonov)

PSF variations are assumed to be a smooth function of object coordinates
 The variations can be decomposed on a polynomial basis X₁

$$P_{ij} = a_i \sum_{l} X_l(\boldsymbol{x}_i) \sum_{b} \sum_{k} h_i (\boldsymbol{x}_k - \boldsymbol{x}_j) c_b \boldsymbol{\psi}_{lbk}$$

$$\boldsymbol{\psi}_b$$

$$X_l = cste \quad \boldsymbol{x} \quad \boldsymbol{x}^2 \quad \boldsymbol{x}^3 \quad \boldsymbol{y} \quad \boldsymbol{xy} \quad \boldsymbol{x}^2 \boldsymbol{y} \quad \boldsymbol{y}^2 \quad \boldsymbol{xy}^2 \quad \boldsymbol{y}^3$$

Recovered PSF with simulated, undersampled data

Example of a reconstructed MEGACAM average PSF in the i band

"Blind", global astrometric solutions

- The mapping of astrometric distortions typically requires a 4^{th} degre polynomial in projected coordinates ξ
 - 30 free parameters per CCD, written to FITS headers using the "TPV" convention
 - Approaches that won't work here:
 - "physical" modeling (CCD geometry, optical distortions, atmospheric refraction)
 - Too many different instruments
 - Information missing
 - fit the distortion coefficients for each exposure using a reference catalog (GSC, USNO,...)
 - Simple and fast but too sensitive to inaccuracies in the reference catalog, especially when a little more than 20 stars are crossidentified on a CCD.
 - Global solution: fit the distorsion coefficients by additionally minimizing the distances between the projected coordinates of overlapping detections.
 - Approach taken for many astrometric reduction problems (e.g. Eichhorn 1960, Deul et al. 1995, Kaiser et al. 1999, Radovich et al. 2004)
 - For every source s on overlapping exposures a and b minimize

$$\chi^2 = \sum_{s} \sum_{a} \sum_{b} W_{sab} \| \boldsymbol{\xi}_a(\boldsymbol{x}_{sa}) - \boldsymbol{\xi}_b(\boldsymbol{x}_{sb}) \|^2$$

Minimising the number of free parameters

- Mosaic cameras: n_{chip}×30 = hundreds of free parameters per exposure for a 4th degree polynomial per chip!
 - Too many free parameters: robustness problems arise because of a lack of sources or confusion in some fields
 - Slow, iterative approach necessary
- For a given instrument (and a given filter combination), one may assume that the distortion pattern does not vary measurably over some period of time (observing run)
 - Use FITS keywords to automatize the process of grouping exposures per instrumental "context"
- One must still allow the lower orders of the distorsion pattern to vary <u>globally</u> from exposure to exposure because of atmospheric refraction and flexures
 - $n_{chip} \times n_{instru} \times 30 + 12 \times (n_{exp} n_{instru})$ free parameters
 - Requires an intermediary transformation to a common re-projection
 - Deal with the Jacobians of individual re-projections

Factors limiting astrometric precision

- Photon noise: 3 200 mas on individual exposures depending on SNR and seeing
- "Frozen" atmospheric turbulence on short exposures (~5-20 mas for t<30s)
- Source crowding and confusion noise
- Differential Chromatic Refraction (wide filters)
 - Atmospheric
 - Chromatic aberrations
- Variability of the intra-pixel response profile from pixel to pixel
 - Mostly affect IR arrays
 - On modern CCDs, repeatability of centroiding with properly sampled stars is ~ 1/300th of a pixel over the array (e.g. Yano et al. 2004)
 - Step-and-repeat pixel size error on some generations of large CCDs (*Shaklan & Pravdo 1994*): typically 0.5µm (a few hundredth of a pixel) each 512 or 1024 pixel
- Proper motions
- Trigonometric parallaxes

Correcting differential chromatic refraction

For a star with spectral index α, observed at zenithal distance z in a filter of bandwidth w (in microns) centered on wavelength λ₀ (in arcsec):

$$\Delta z_{\lambda_0,w} \approx 23750 \left(\frac{dn}{d\lambda}\right)_{\lambda_0} \tan z \ w^2 \alpha$$

- w≈0.1µm for the u,g,r,i,z photometric system (SDSS,MEGACAM,...)
 - At z=45 deg, ∆z varies from ~20mas (z band) to ~150mas (u band).
- Most ground-based catalogues are not corrected for DCR!
- We create a synthetic, global color index by assuming linear dependency between "true" color indices and correct relative position assuming that shift in position is proportional to color index.

Some of the distorted plate solutions coming out of the system

Computing individual proper motions

- Iterative clipping on global solution
- Proper motions computed from deviations to the global solution
- Iterative rejection of outliers in time sequence for each object.
- Trigonometric parallaxes are ignored

Results

Results

Comparison with independent proper motion measurements

Perspectives / Plans

"Fast" Associations					
Association	Age [Myr]	Distance [pc]	μRA [mas/yr]	µDec [mas/yr]	
Pleiades	120	120	-35	-15	
CrA	1	130	-35	51	
η Cha	9	100	-30	28	
Upper Sco	5	125	-9	-24	
a Per	50	180	24	-26	
IC2391	55	155	-25	23	
IC2602	50	145	-22	10	
Lupus	3	140	-17	-27	
IC348	3	350	7	-9	
NGC1333	1	350	7	-9	
Praesepe	650	180	-36	-13	
Ophiuchus	1	145	-10	-25	
Taurus	3	140	-8	-25	
Blanco 1	100	210	19	4	
Hyades	625	40	~100		

"Slow Associations"

Association	Age [Myr]	Distance [pc]
Cygnus OB2		2000
IC348	3	350
NGC1333	1	350
Serpens	3	450
Orion	1-10	400

DANCE over the INternet

• Entire photometric and astrometric catalogues will be available on the internet in V.O format

Lessons learned

- The most time-consuming issues we faced were related to the quality of data and metadata
 - "Funny PSFs"
 - Automated PSF modeling and diagnostic
 - metadata inconsistency in image headers
 - Incorrect values (e.g. saturation level)
 - Basic WCS information sometimes missing
 - Different header keywords used for representing the same information (e.g. DATE-OBS, MJD-OBS, MJDSTART, EPOCH, etc.)
- Don't trust proper motion measurements obtained from less than ~half-a-dozen distinct epochs

Schmidt plate time!

- Small test with 8 partially overlapping Schmidt plates (4 ESO-R + 4 SERC-J) around the south celestial pole.
 - 1976-1990
- Digitized in density mode with the MAMA plate scanner and downloaded from the VO-Paris southern atlas repository
- Trimmed to exclude calibration wedges
- UCAC-3 used as reference catalog

PSF modeling

• 6th degree polynomial in MAG_AUTO

Astrometric calibration

Quick PM comparison with UCAC-3 (all detections)

Future improvements

- Astrometric calibration
 - Need to improve the solver
 - Explicit handling of proper motions and trigonometric parallaxes
 - Parallelize parts of the code which are not yet multithreaded
 - Include astrometric.net client in SCAMP
- Image measurements
 - Automatize further image diagnostic tools
 - Implement a "dash model" (and a "planet disk" model?) among models fitted in SExtractor

