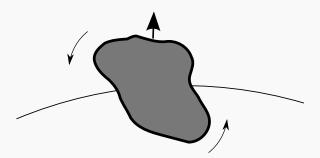
# Estimation of Yarkovsky acceleration using datamining in the perspective of Gaia

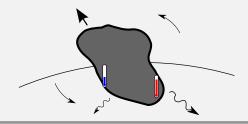
#### Josselin Desmars<sup>1,2</sup>

<sup>1</sup>Shanghai Astronomical Observatory


<sup>2</sup>Institut de Mécanique Céleste et de Calcul des Éphémérides

June 20-22, 2012 NAROO Workshop






# Yarkovsky effect



#### Yarkovsky effect

- The Yarkovsky effect is a weak non gravitational force associated with anisotropic emission of thermal radiation
- It affects mainly small NEAs (about 10 cm to 10 km in diameter)
- Despite its small magnitude, it has important effect in dynamical evolution of NEAs
- One of the main effects is to modify the semimajor axis



Aim : Detect the rate of change of asteroid semimajor axis by using observations

## Brief story of Yarkovsky effect

- $\sim$ **1900** The effect was discovered around 1900 by I.O. Yarkovsky, a Russian engineer
  - 1951 E.Opik discussed the possible importance of the effect in meteroids motions
  - S.Chesley et al. →first measure of Yar-2003 kovsky effect on a asteroid (6489 Golevka) using radar measurements
  - 2006 D. Vokrouhlický et al. -- first measure of Yarkovsky effect on a asteroid (152563 1992BF) using astrometrical observations

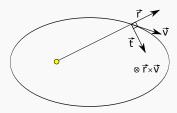


Igor O. Yarkovsky

#### Modelling the Yarkovsky effect

#### **Complex Modelling**

- Vokrouhlický et al. (2000) modeled the force by solving the surface heat diffusion problem.
- They used linear and finite element methods
- With linear method, the rate of change of semimajor axis  ${\bf da}/{\bf dt}$  depends on  $\gamma$  obliquity of spin axis,  $\rho_b$  bulk density, D diameter and  $\Theta$  diurnal thermal parameter


$$rac{da}{dt} \propto rac{\cos \gamma}{
ho_b D} rac{\Theta}{1 + \Theta + 0.5\Theta^2}$$

#### Simple Modelling

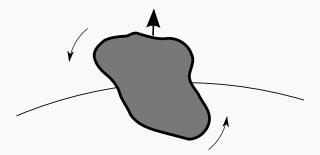
According to Chesley et al. (2008), the Yarkovsky effect can be modeled as a transverse force, depending on orbital elements, the heliocentric distance and on a drift in semi major-axis  $\dot{a} = \frac{da}{dt}$ 

$$\mathbf{F_Y} = \frac{n}{2} \frac{a^2 (1 - e^2)}{r^2} \left(\frac{da}{dt}\right) \mathbf{t}$$

where *n* is mean motion, a semi-major axis, e excentricity and  $\mathbf{t} = \frac{(\mathbf{r} \times \mathbf{v}) \times \mathbf{r}}{|(\mathbf{r} \times \mathbf{v}) \times \mathbf{r}|}$ the transverse vector.



## Dynamical model


The dynamical model takes into account :

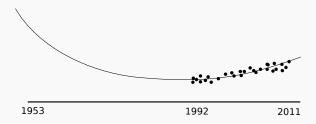
- gravitational perturbations of planets + Pluto + Moon
- gravitational perturbations of 3 main asteroids (Ceres, Vesta, Pallas)
- relativistic effects
- Yarkovsky acceleration (F<sub>Y</sub>)

#### Computation

- Numerical integration of the equations of motion and equations of variations
- Determination of initial parameters (initial position & velocity + semi-major axis drift rate à) by least-square method, giving also the covariance matrix of the parameters

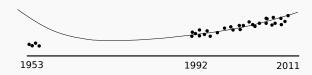
# **Detection of Yarkovsky Effect**




## 152563 (1992BF)

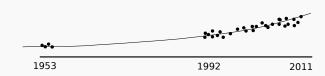
- Asteroid was discovered on 1992
- 4 precovery observations on January 1953 are available.
- Vokrouhlický et al. AJ 135, (2008) detect a drift in semimajor axis using observations from 1992 to 2008 and 1953 precovery observations.

$$\frac{da}{dt} = -(10.7 \pm 0.7) \times 10^{-4} AU.Myr^{-1}$$


222 observations (1992-2011) + 4 observations (1953); 2 unusable obs.

- 1992-2011 observations and no Yarkovsky effect
- 2 1953-2011 observations and no Yarkovsky effect
- 3 1953-2011 observations and Yarkovsky effect




222 observations (1992-2011) + 4 observations (1953); 2 unusable obs.

- 1992-2011 observations and no Yarkovsky effect
- 1953-2011 observations and no Yarkovsky effect
- 3 1953-2011 observations and Yarkovsky effect



222 observations (1992-2011) + 4 observations (1953); 2 unusable obs.

- 1992-2011 observations and no Yarkovsky effect
- 2 1953-2011 observations and no Yarkovsky effect
- 3 1953-2011 observations and Yarkovsky effect



222 observations (1992-2011) + 4 observations (1953); 2 unusable obs.

- 1992-2011 observations and no Yarkovsky effect
- 2 1953-2011 observations and no Yarkovsky effect
- 3 1953-2011 observations and Yarkovsky effect

#### Residuals

| date              | 1            |              | 2            |              | 3            |              |
|-------------------|--------------|--------------|--------------|--------------|--------------|--------------|
|                   | $\alpha$     | δ            | α            |              | $\alpha$     | δ            |
| 1953 01 10.136810 | +7.535       | +3.089       | +5.556       | +2.479       | -0.138       | +0.439       |
| 1953 01 10.143750 | +7.524       | +0.831       | +5.546       | +0.222       | -0.148       | -1.819       |
| 1953 01 12.136810 | +7.294       | +2.224       | +5.446       | +1.650       | +0.100       | -0.235       |
| 1953 01 12.143750 | +7.492       | +2.898       | +5.644       | +2.325       | +0.300       | +0.440       |
|                   | $rms_{lpha}$ | $rms_\delta$ | $rms_{lpha}$ | $rms_\delta$ | $rms_{lpha}$ | $rms_\delta$ |
| 1953-2011         | 1.243        | 0.707        | 1.141        | 0.674        | 0.728        | 0.634        |
| 1992-2011         | 0.749        | 0.634        | 0.875        | 0.630        | 0.734        | 0.626        |

222 observations (1992-2011) + 4 observations (1953); 2 unusable obs.

- 1992-2011 observations and no Yarkovsky effect
- 2 1953-2011 observations and no Yarkovsky effect
- 3 1953-2011 observations and Yarkovsky effect

#### Residuals

| date              | 1            |              | 2            |              | 3            |              |
|-------------------|--------------|--------------|--------------|--------------|--------------|--------------|
|                   | $\alpha$     | $\delta$     | $\alpha$     | $\delta$     | $\alpha$     | δ            |
| 1953 01 10.136810 | +7.535       | +3.089       | +5.556       | +2.479       | -0.138       | +0.439       |
| 1953 01 10.143750 | +7.524       | +0.831       | +5.546       | +0.222       | -0.148       | -1.819       |
| 1953 01 12.136810 | +7.294       | +2.224       | +5.446       | +1.650       | +0.100       | -0.235       |
| 1953 01 12.143750 | +7.492       | +2.898       | +5.644       | +2.325       | +0.300       | +0.440       |
|                   | $rms_{lpha}$ | $rms_\delta$ | $rms_{lpha}$ | $rms_\delta$ | $rms_{lpha}$ | $rms_\delta$ |
| 1953-2011         | 1.243        | 0.707        | 1.141        | 0.674        | 0.728        | 0.634        |
| 1992-2011         | 0.749        | 0.634        | 0.875        | 0.630        | 0.734        | 0.626        |

222 observations (1992-2011) + 4 observations (1953); 2 unusable obs.

- 1992-2011 observations and no Yarkovsky effect
- 2 1953-2011 observations and no Yarkovsky effect
- 1953-2011 observations and Yarkovsky effect

#### Residuals

| date              | 1            |              | 2            |              | 3            |              |
|-------------------|--------------|--------------|--------------|--------------|--------------|--------------|
|                   | $\alpha$     | δ            | $\alpha$     | δ            | $\alpha$     | δ            |
| 1953 01 10.136810 | +7.535       | +3.089       | +5.556       | +2.479       | -0.138       | +0.439       |
| 1953 01 10.143750 | +7.524       | +0.831       | +5.546       | +0.222       | -0.148       | -1.819       |
| 1953 01 12.136810 | +7.294       | +2.224       | +5.446       | +1.650       | +0.100       | -0.235       |
| 1953 01 12.143750 | +7.492       | +2.898       | +5.644       | +2.325       | +0.300       | +0.440       |
|                   | $rms_{lpha}$ | $rms_\delta$ | $rms_{lpha}$ | $rms_\delta$ | $rms_{lpha}$ | $rms_\delta$ |
| 1953-2011         | 1.243        | 0.707        | 1.141        | 0.674        | 0.728        | 0.634        |
| 1992-2011         | 0.749        | 0.634        | 0.875        | 0.630        | 0.734        | 0.626        |

#### Rate of change of semimajor axis for 1992 BF

Vokrouhlický et al. AJ 135, (2008) (with 1953-2008 observations) :

$$\frac{da}{dt} = -(10.7 \pm 0.7) \times 10^{-4} AU.Myr^{-1}$$

This work (with 1953-2011 observations):

$$\frac{da}{dt} = -(11.66 \pm 0.77) \times 10^{-4} AU.Myr^{-1}$$

**Tab. 1:** Estimated semimajor axis drift rate for some NEAs

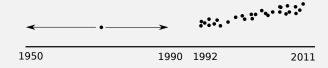
| Ast.Num. | Ast.Name   | da/dt   | $\sigma_{\dot{a}}$ | S/N  | Observed arc | H.Mag. |
|----------|------------|---------|--------------------|------|--------------|--------|
| 152563   | 1992BF     | -11.658 | 0.772              | 15.1 | 1953-2011    | 19.7   |
| 85953    | 1999FK21   | -10.600 | 1.452              | 7.3  | 1971-2011    | 18.0   |
| 1862     | Apollo     | -2.527  | 0.428              | 5.9  | 1930-2008    | 16.0   |
| 1620     | Geographos | -2.380  | 0.543              | 4.4  | 1951-2012    | 15.2   |
| 2100     | Ra-Shalom  | -5.758  | 1.332              | 4.3  | 1975-2010    | 16.1   |
| 2340     | Hathor     | -13.532 | 3.372              | 4.0  | 1976-2012    | 20.0   |
| 54509    | YORP       | -30.826 | 7.990              | 3.9  | 2000-2005    | 22.6   |
| 101955   | 1999RQ36   | -15.382 | 5.677              | 2.7  | 1999-2012    | 20.6   |
| 1685     | Toro       | -1.286  | 0.488              | 2.6  | 1948-2010    | 14.3   |
| 1865     | Cerberus   | -5.539  | 3.392              | 1.6  | 1971-2007    | 16.5   |
| 2063     | Bacchus    | -3.495  | 2.524              | 1.4  | 1977-2007    | 17.1   |
|          |            |         |                    |      |              |        |

Note : da/dt &  $\sigma_{\dot{a}}$  are in  $10^{-4}$ AU/My

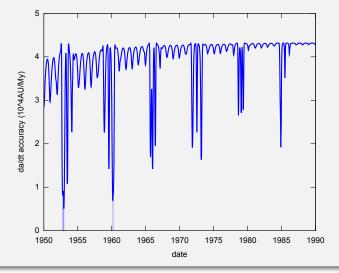
Negative values mean retrograde rotation (consistent with La Spina et al., 2004)

#### Some remarks

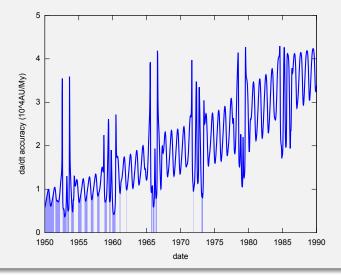
- The drift da/dt=à needs real data to be determined
- The accuracy of the drift  $\sigma_a$  only needs accuracy of the data to be determined


#### In the next slides...

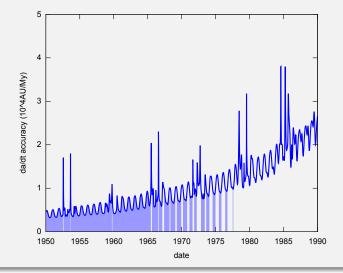
- In the context of simulated observations, we will determined only the accuracy of the drift  $\sigma_{\dot{a}}$
- 10<sup>-4</sup>AU/My will be considered as a typical (accurate) value for accuracy of the drift in semimajor axis


# Yarkovsky effect in the datamining context



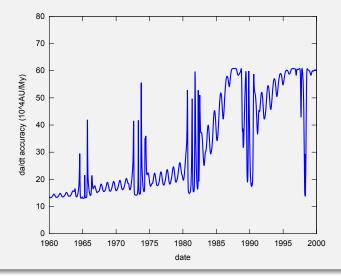

- What is happen if there is no precovery observations on 1953 but on other period?
- What is the influence of the precovery observation's date on the accuracy of the rate of change of semimajor axis?
- What is the influence of the precovery observation's accuracy on the accuracy of the rate of change of semimajor axis?




Precovery observation with accuracy  $\sigma=1.0$  arcsec

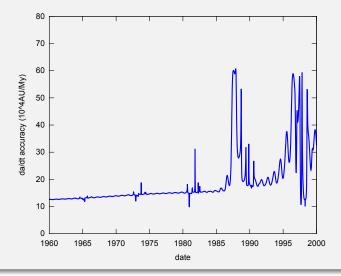


Precovery observation with accuracy  $\sigma=0.1$  arcsec



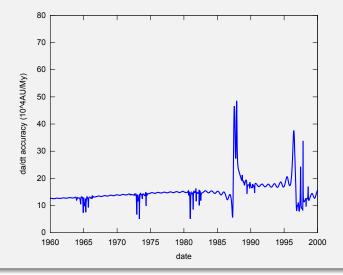

Precovery observation with accuracy  $\sigma=10$  mas –Gaia reduction–




# Influence of precovery observation for (99942) Apophis

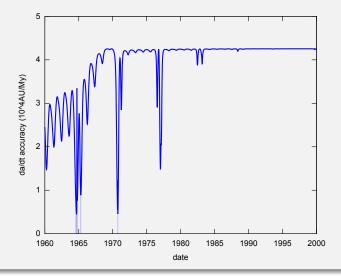
Precovery observation with accuracy  $\sigma=1.0$  arcsec




# Influence of precovery observation for (99942) Apophis

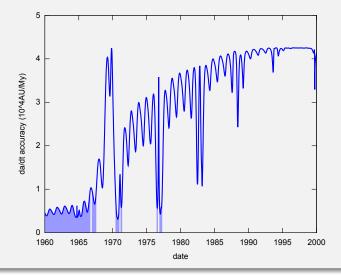
Precovery observation with accuracy  $\sigma=0.1$  arcsec




## Influence of precovery observation for (99942) Apophis

Precovery observation with accuracy  $\sigma=10$  mas –Gaia reduction–




# Influence of precovery observation for (101955) 1999RQ36

Precovery observation with accuracy  $\sigma=1.0$  arcsec




# Influence of precovery observation for (101955) 1999RQ36

Precovery observation with accuracy  $\sigma=0.1$  arcsec



## Influence of precovery observation for (101955) 1999RQ36

Precovery observation with accuracy  $\sigma=10$  mas –Gaia reduction–



# Yarkovsky effect in the Gaia context



#### Gaia stellar catalogue

- Gaia stellar catalogue will allow to reduce old photographics or CCD frames with an accuracy of 5-10 mas
- What is the improvement in detection of Yarkovsky effect with Gaia stellar catalogue?

- Current observations (no reduction with Gaia catalogue)
- Only the first and the last observation can be reduced with Gaia catalogue
- Only the first 5 and the last 5 observations can be reduced with Gaia catalogue
- Only the first 10 and the last 10 observations can be reduced with Gaia catalogue
- 6 All observations can be reduced with Gaia catalogue
  - Current obs. σ=0.1-1.0arcsec
  - Gaia reduced obs. σ=10mas

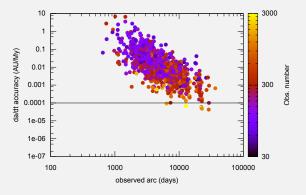


- Current observations (no reduction with Gaia catalogue)
- Only the first and the last observation can be reduced with Gaia catalogue
- Only the first 5 and the last 5 observations can be reduced with Gaia catalogue
- Only the first 10 and the last 10 observations can be reduced with Gaia catalogue
- 6 All observations can be reduced with Gaia catalogue
  - Current obs. σ=0.1-1.0arcsec
  - Gaia reduced obs. σ=10mas



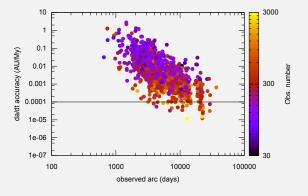
- Current observations (no reduction with Gaia catalogue)
- Only the first and the last observation can be reduced with Gaia catalogue
- Only the first 5 and the last 5 observations can be reduced with Gaia catalogue
- Only the first 10 and the last 10 observations can be reduced with Gaia catalogue
- 5 All observations can be reduced with Gaia catalogue
  - Current obs. σ=0.1-1.0arcsec
  - Gaia reduced obs. σ=10mas




- Current observations (no reduction with Gaia catalogue)
- Only the first and the last observation can be reduced with Gaia catalogue
- Only the first 5 and the last 5 observations can be reduced with Gaia catalogue
- Only the first 10 and the last 10 observations can be reduced with Gaia catalogue
- 5 All observations can be reduced with Gaia catalogue
  - Current obs. σ=0.1-1.0arcsec

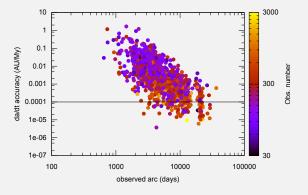


- Current observations (no reduction with Gaia catalogue)
- Only the first and the last observation can be reduced with Gaia catalogue
- Only the first 5 and the last 5 observations can be reduced with Gaia catalogue
- Only the first 10 and the last 10 observations can be reduced with Gaia catalogue
- 6 All observations can be reduced with Gaia catalogue
  - Current obs. σ=0.1-1.0arcsec
  - Gaia reduced obs. σ=10mas



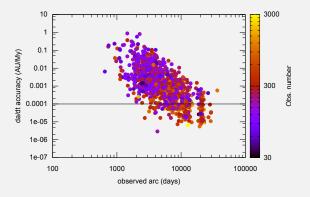

1. Accuracy with current observations – no reduction with Gaia catalogue –




| $\mu_{\sigma_{a}}$              | NEAs with $\sigma_{\dot{a}} \leq 10^{-4} { m AU/My}$ | NEAs with $\sigma_{\dot{a}} \leq 10^{-5} \mathrm{AU/My}$ |
|---------------------------------|------------------------------------------------------|----------------------------------------------------------|
| $661.1  \mathrm{10^{-4} AU/My}$ | 6 (0.5%)                                             | 0 (0.0%)                                                 |

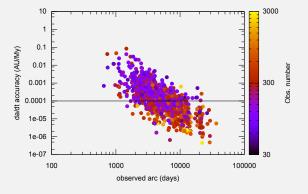
2. Accuracy with first and last obs. reduced with Gaia




| $\mu_{\sigma_{\dot{a}}}$       | NEAs with $\sigma_{\dot{a}} \leq 10^{-4} { m AU/My}$ | NEAs with $\sigma_{\dot{a}} \leq 10^{-5} { m AU/My}$ |
|--------------------------------|------------------------------------------------------|------------------------------------------------------|
| $337.5 \ 10^{-4} \text{AU/My}$ | 29 (2.4%)                                            | 0 (0.0%)                                             |

3. Accuracy with 5 first and 5 last obs. reduced with Gaia




| $\mu_{\sigma_{\dot{a}}}$ | NEAs with $\sigma_{\dot{a}} \leq 10^{-4} \mathrm{AU/My}$ | NEAs with $\sigma_{\dot{a}} \leq 10^{-5} \mathrm{AU/My}$ |
|--------------------------|----------------------------------------------------------|----------------------------------------------------------|
| $196.4 \ 10^{-4} AU/My$  | 96 (7.9%)                                                | 4 (0.3%)                                                 |

4. Accuracy with 10 first and 10 last obs. reduced with Gaia



| $\mu_{\sigma_{\dot{a}}}$ | NEAs with $\sigma_{\dot{a}} \leq 10^{-4} { m AU/My}$ | NEAs with $\sigma_{\dot{a}} \leq 10^{-5} \mathrm{AU/My}$ |
|--------------------------|------------------------------------------------------|----------------------------------------------------------|
| $114.0 \ 10^{-4} AU/My$  | 150 (12.4%)                                          | 10 (0.8%)                                                |

#### 5. Accuracy with all observations reduced with Gaia



| $\mu_{\sigma_{\dot{a}}}$ | NEAs with $\sigma_{\dot{a}} \leq 10^{-4} { m AU/My}$ | NEAs with $\sigma_{\dot{a}} \leq 10^{-5} \mathrm{AU/My}$ |
|--------------------------|------------------------------------------------------|----------------------------------------------------------|
| $8.2 \ 10^{-4} AU/My$    | 536 (44.2%)                                          | 114 (9.4%)                                               |

#### Conclusion

- Despite its weakness, the Yarkovsky effect can produce a secular drift of semimajor axis.
- Currently this effect (drift in semimajor axis) can be detect with good accuracy for only few objects.
- Datamining, by extending the orbital arc, can help to decrease the accuracy of the drift (even with poor observations), but not for all NEAs (see Apophis)
- Gaia stellar catalogue will allow new reduction of astrometric observations with an accuracy of about 10 mas
- $\bullet$  Currently the determination of drift with an accuracy less than  $10^{-4} {\rm AU/My}$  can be realized for only 6 NEAs
  - by reducing 2 observations with Gaia catalogue, 29 NEAs
  - by reducing 10 observations with Gaia catalogue, 96 NEAs
  - by reducing 20 observations with Gaia catalogue, 150 NEAs
  - by reducing all observations with Gaia catalogue, 536 NEAs

#### Conclusion

- Other possible solutions in order to increase accuracy of the drift :
  - radar measurements (for Apophis in 2013  $\sigma_{\hat{\sigma}}$  60.10<sup>-4</sup>AU/My  $\rightarrow \sim 10.10^{-4}$ AU/My)
  - Gaia observations (Mouret & Mignard 2011 for 64 NEAs)
- With the knowledge of the drift and some assumptions, we can deduce from Vokrouhlický model, the spin obliquity or the bulk density.

