Mobile Device to Digitize the photographic plates:

first results

Grosheva E.A., Izmailov I.S., Khrutskaya E.V.

Pulkovo Observatory, Russia

Camera, lens and scheme

Calibration

- 2008, Brussels. Measurement of the template by means of DAMIAN (Digital Access to Metric Images Archives Network)

Template is a photographic plate $(16 \times 13 \mathrm{~cm})$ with about of 200 round marks which are made by photographic method. Size of mark is 250-300 microns

- Correction of distortion, set DAMIAN's measured coordinates X, Y [mm] as standart
- Reduction model $\left\{\begin{array}{rr}X=\sum_{i}^{n} \sum_{j}^{i} a_{i j} x^{j} y^{n-j} & \begin{array}{r}x, y \text { - measured coordinates } \\ \text { of template marks, } \mathrm{px} .\end{array} \\ Y=\sum_{i}^{n} \sum_{j}^{i} b_{i j} y^{j} x^{n-j} & X, Y \text {-standart coordinates } \\ \text { of template marks, } \mathrm{mm} .\end{array}\right.$
- Comparison our measurements with DAMIAN's one
- Calculating of reduction's parameters $\mathbf{a}_{\mathbf{i j}}, \mathbf{b}_{\mathbf{i j}}$

Distortion of DAMIAN's lens

Partly overlapping imagets are taken from template with DAMIAN.
Size of imagets is $7 \times 7 \mathrm{~mm}$ (field of lens's view).
About of 100 marks of template were placed on 2 or 4 imagets.
Calculation of differences for camera's coordinates for two imagets:

$$
\begin{aligned}
& \Delta \mathrm{X}[\mathrm{~mm}]=\mathrm{Xpos} 1-\mathrm{Xpos} 2 \\
& \Delta \mathrm{Y}[\mathrm{~mm}]=\mathrm{Ypos} 1-\mathrm{Ypos} 2
\end{aligned}
$$

Generation of equations system:
$\Delta \mathrm{X}[\mathrm{mm}]=f\left(\mathrm{t}_{\mathrm{i}}, \mathrm{X}_{1}[\mathrm{px}], \mathrm{Y}_{1}[\mathrm{px}]\right)-f\left(\mathrm{tp}_{\mathrm{i}}, \mathrm{X}_{2}[\mathrm{px}], \mathrm{Y}_{2}[\mathrm{px}]\right)$
$\Delta \mathrm{Y}[\mathrm{mm}]=f\left(\mathrm{tp}_{\mathrm{i}}, \mathrm{X}_{1}[\mathrm{px}], \mathrm{Y}_{1}[\mathrm{px}]\right)-f\left(\mathrm{tp}_{\mathrm{i}}, \mathrm{X}_{2}[\mathrm{px}], \mathrm{Y}_{2}[\mathrm{px}]\right)$
tp_{i} - parameters of the transformation of coordinates, obtained taking into account the distortion
$\mathrm{X}_{1}, \mathrm{Y}_{1}$ - coordinates of mark on 1-st imaget, px.
$\mathrm{X}_{2}, \mathrm{Y}_{2}$ - coordinates of the same mark on 2-nd imaget, px .
Solution of system by the method of least squares and determination the parameters $\mathrm{tp}_{\mathrm{i}} . \sigma_{1 \mathrm{X}}=0.15 \mu, \sigma_{1 \mathrm{y}}=0.17 \mu$.

Correction of distortion

Code of function for coordinate transformation from pixels to mm:

```
void vdam(double x, // pix
    double y, // pix
    double* xmm, // mm
    double* ymm, // mm
    double XPOSITION,// from fits head
    double YPOSITION,// from fits head
    double ti1, // ! pixel coordinate of x distortion center.
    double ti2, // ! pixel coordinate of y distortion center.
    double ti3, // ! initial scale [mm/pixel] x-axis
    double ti4, // ! initial scale [mm/pixel] y-ax
    double tp1,// 1. scale X
    double tp2,// 2. rot. X
    double tp3,// 3. offset X not used
    double tp4,// 4. scale Y
    double tp5,// 5. rot. Y
    double tp6,// 6. offset Y not used
    double tp7,// 7. dist.Off.X
    double tp8,// 8. dist.Off.Y
    double tp9 // 9. distor.
    )
```


Calibration

- Digitization of template by Canon camera and measurements
- Reduction model $\quad\left\{\begin{array}{l}X=3 \\ =\sum_{i}^{n} \sum_{j}^{i} a_{i j} x^{j} y^{n-j} \\ Y=\sum_{i}^{n} \sum_{j}^{i} b_{i j} y^{j} x^{n-j}\end{array}\right.$
x, y - measured coordinates
of template marks, px.
X, Y - standart coordinates
of template marks, mm.
- Comparison our measurements with DAMIAN's one
- Calculating of reduction's parameters $\mathbf{a}_{\mathbf{i j}}, \mathbf{b}_{\mathbf{i j}}$

Systematic errors before correction

The dependence of the systematic errors in X
from X-coordinate and
from Y-coordinate

The dependence of the systematic errors in Y
from X-coordinate

and
from Y-coordinate

The vector field of systematic errors of the digitized image ($3744 \times 5616 \mathrm{px}$). Maximal errors are 0.0900 mm for X and 0.1000 mm for Y.

Residuals

The dependence of the residuals in X
from X-coordinate

and
from Y-coordinate

The dependence of the residuals in Y

$$
\sigma_{1 \mathrm{X}}=0.56 \mu, \sigma_{1 \mathrm{Y}}=0.63 \mu, \text { number of measurements }-30
$$

Residuals after correction of aberrations.
Maximal errors are 0.0017 mm for X and 0.0017 mm for Y
at the egde of image
Workshop NAROO-GAIA, Paris Observatory, June 20-22, 2012

Stability of measurements

Template was digitized at different positions and was measured for several times. The comparison was made using the Turner's method.

rms, $\boldsymbol{\mu}$	$\sigma_{\mathbf{X}}$	$\sigma_{\mathbf{Y}}$	\mathbf{N}
multiple digitization without plate offset	$\mathbf{0 . 3 7}$	$\mathbf{0 . 3 9}$	$\mathbf{1 0}$
multiple digitization with plate offset	$\mathbf{0 . 4 9}$	$\mathbf{0 . 5 0}$	$\mathbf{1 0}$
comparison of digitized template with one, turned on 180°	0.73	$\mathbf{0 . 8 8}$	$\mathbf{1 0}$
comparison of digitized template with one, turned on $\mathbf{9 0}^{\circ}$	$\mathbf{0 . 6 3}$	$\mathbf{0 . 6 3}$	$\mathbf{1 0}$

Table 1. Stability of measurements. N - number of digitizations and measurements used for deriving an average error.

Test: measurements of ADS 8002

Photographic plates

- 55 plates by 26 -inch refractor (D 65 cm, F10413mm, Scale 19.80 " $/ \mathrm{mm}$).
- 5 reference stars into area of $75 \times 90 \mathrm{~mm}$.
- number of exposures - $5 \div 20$.
- 1 px of digitized image corresponds to 21μ of plate.

Previous measurements

- by semi-automatic measuring mashine "Askorecord"
- by automatic measuring machine "Fantasy"
- scanner Microtek Scan Maker i900 by two methods

The optimal shooting mode for the best image:

- Spectral range - white background
- Aperture
- 8
- Exposure
$-\frac{1}{4}$, ISO 400
- Lens
- 300 mm «TAIR-3» vs 200mm «Jupiter 21 M»
- "Live-view" mode with raised the mirror
- Pause before shooting
- Multiple shooting of plate

Comparison of accuracies

	N	mean σ	ADS 8002 A		ADS 8002 B	
			$\sigma_{\mathrm{X}}[\mu]$	$\sigma_{Y}[\mu]$	$\sigma_{\mathrm{X}}[\mu]$	$\sigma_{\mathrm{Y}}[\mu]$
Fantasy	25	0.81	0.77	0.83	0.97	0.66
Askorecord	25	1.57	1.34	1.72	1.29	1.95
Fantasy	36	0.84	0.81	0.82	1.06	0.68
Scaner by method 1	36	2.95	1.88	3.72	2.57	3.65
Fantasy	30	0.77	0.67	0.75	1.00	0.64
Scaner by method 2	30	1.80	1.51	1.56	2.61	1.49
Fantasy	40	1.03	1.00	1.11	1.19	0.83
digitized by Canon	40	1.02	1.03	0.95	1.07	1.01

Table 2. Standard deviations (in microns) for one plate in X and Y for components A and B of double star ADS 8002. N - number of plates used for comparison.

Average accuracy of measuring methods

«Askorecord»	1.94
Scanner (method by I. Izmailov)	3.51
Scanner (method by S. Kalinin)	2.33
«Fantasy»	1.00
Digitization by Canon	0.99

Accuracy of Fantasy's measurements is adopted as 1

Results - trigonometric parallaxes of ADS 8002 components

By automatic measuring machine "Fantasy" -

$$
\begin{aligned}
& \pi_{A}=43.25 \pm 6.3 \mathrm{mas} \\
& \pi_{B}=31.9 \pm 7.5 \mathrm{mas}
\end{aligned}
$$

By measurements of plates digitized with camera Canon

$$
\begin{aligned}
& \pi_{A}=51.22 \pm 6.6 \mathrm{mas} \\
& \pi_{B}=30.9 \pm 6.6 \mathrm{mas}
\end{aligned}
$$

Example of photographic observations of Saturn's satellites

 Observational material: 1975 jan, feb, mar, 10 nights, 24 plates Objects:

Digitization, measurements and reduction:

- Digitization template and plates by camera Canon (2 plates per minute)
- Measurements with software package IZMCCD (by I. Izmailov) - x, y [px]. Centers of images are defined by Moffat profile
- Calibration and transformation $x, y[p x]$ to $X, Y[m m]$
- Astrometric reduction by Turner's method (9-12 reference stars for plate) using TYCHO2 as reference catalog

Comparison with a theory

All theoretical positions of Saturnian satellites were taken with Natural Satellites Ephemeride Server MULTI-SAT (N.Emelyanov).
Ephemeris were calculated according to theory NOE-6-2011-MAIN (V.Lainey, 2011).

Satellite	mean $(O-C)_{\alpha} \cdot \cos \delta$	mean $(O-C)_{\delta}$	$\sigma_{(0-\mathrm{c}) \alpha}$	$\sigma_{(0-\mathrm{c}) \delta}$	ε_{α}	ε_{δ}
Enceladus S2 8 position	-0.16	0.09	0.24	0.27	± 0.15	± 0.12
Tethys 23 positions	-0.04	-0.01	0.16	0.06	± 0.06	± 0.03
Dione (S4) 52 positions	-0.03	0.04	0.13	0.10	± 0.04	± 0.04
Rhea(S5) 67 positions	-0.07	0.01	0.12	0.09	± 0.04	± 0.03
Titan (S6) 82 positions	-0.12	0.02	0.16	0.08	± 0.05	± 0.03
Hyperion (S7) 8 positions	0.00	-0.07	0.24	0.22	± 0.30	± 0.16
Iapetus (S8) 71 positions	-0.07	-0.01	0.16	0.09	± 0.07	± 0.04

Mean values of ($O-C$) residuals, standard deviation σ, arcsec, and average errors of mean positions ε, arcsec.

Plates with Pluto images

Файл Вид Вычисления Разметка Справка

Size $=936 / 936 \operatorname{Exp}=0.01 \mathrm{~min}=2754 \max =41933$ Dat $\mathrm{x}=0460 \mathrm{y}=0304 \mathrm{I}=05618 \mathrm{ra}=101411.338 \mathrm{dec}=+224021.37$

Pluto positions

64 plates with Pluto were obtained with Normal Astrograph and digitized with Canon camera (now in process of data treatment).
(O-C) for Pluto from some plates

	By our method		by DAMIAN	
UTC	$(O-C) \alpha * \cos \delta$	$(O-C) \delta$	$(O-C) \alpha * \cos \delta$	$(O-C) \delta$
19560316.883330	0.11	-0.13	-0.21	-0.26
19560331.809130	-0.05	-0.11	-0.23	-0.25
19560430.885810	0.43	0.01	-0.22	-0.13

Advantage and shortcoming

Some advantages of this method of digitization:

- Digitization speed - 2 plates per minute;
- Absence of distortions caused by the irregularity of the movement scanner line;
- Absence of distortions associated with the mosaic of the image;
- Distortion of digitized image are caused by lens aberrations and easy to correct;
- Camera is easily replaced in the case of failure or upgrade to next model;
- Stand with the carrier of the plate and camera is mobile and may be delivered to remote storage of glass plates:
- Low cost: camera < 2000 euro, lens - priceless, others components - some more 300 euro.

Disadvantage:

Low resolution. 1 px of digitized image corresponds to 21μ of plate.

Conclusion

Digitization of photoplates with Canon EOS 5D Mark II camera, equipped with «Jupiter 21M» lens, are suitable for measurements for astrometric goals.

Thank you for attention!

Camera and lens

21.1-megapixel full-frame CMOS digital camera sensor size 36×24 MM maximum resolution 5616×3744 bpp-42
ISO 50-3200

Canon EOS 5D Mark II

- focal lenght 200 mm
-aperture 1:4.0 до 1:22
- field of view 12°
-resolution (center/edge) 40/30 lines/mm
-lens mount M42×1

«Jupiter 21 M»
(vintage Soviet lens)

