RESUUTS OF RKDUCTION OF PHOTOGR APHIC
PRLTHES TAKEN WITH 26-INCH REFRACTOR
1N PUWKOVO OBSEBV MORS

Kiselev Arab
Kiyaeva O.V.
Romanenko Lea
Shokht NoA.
Kolinichen 2o O.
Vasilioua 0.0
Vasileva T,A.
Poliokow =

System of astrometric databases of Pulkovo observatory.

To database request form Previous page Main Page

Pulkovo database of observations of visual double stars

61 Cygni

Observations of visual double stars at Pulkovo continue stellar astronomy studies, which were started by F. Struve in 19 century and have become traditional for Pulkovo observatory. The scientific purpose of Pulkovo program of complex study of visual double stars is the determination of basic kinematic and dynamic properties of double and multiple stars located in neighbourhood of the Sun. The first goal of this program is to find close (up to 100 parsec) double stars, which have significate proper motion. The next goal is to obtain dense homogeneous series of relative positions of double star components for the determination of their orbits and masses, and for revelation of possible invisible satellites.
Till 1941 observations of double stars were performed, mostly, on the Normal Astrograph, and since 1960 and till present time they have been performed on 26-inch refractor of Pulkovo observatory. Till 1995 there were only photographical observations, and since autumn of 1995 - photographical and CCD observations.

The 3rd database contains relative positions of selected double and multiple stars, and stars with possible invisible satellites. The database requires catalog of relative positions of visual double etare hacod on nhatnorranhin nheorratinne norformod cinco 1 afn on

Pulkovo database of observations of visual double stars

61 Cygni

Orbit of 61 Cyg

Observations of visual double stars at Pulkovo continue stellar astronomy studies, which were started by F. Struve in 19 century and have become traditional for Pulkovo observatory. The scientific purpose of Pulkovo program of complex study of visual double stars is the determination of basic kinematic and dynamic properties of double and multiple stars located in neighbourhood of the Sun. The first goal of this program is to find close (up to 100 parsec) double stars, which have significate proper motion. The next goal is to obtain dense homogeneous series of relative positions of double star components for the determination of their orbits and masses, and for revelation of possible invisible satellites.
Till 1941 observations of double stars were performed, mostly, on the Normal Astrograph, and since 1960 and till present time they have been performed on 26-inch refractor of Pulkovo observatory. Till 1995 there were only photographical observations, and since autumn of 1995 - photographical and CCD observations.

The 3rd database contains relative positions of selected double and multiple stars, and stars with possible invisible satellites. The database requires catalog of relative positions of visual double stars, based on photographic observations performed since 1960 on Pulkovo 26-inch refractor, and similar catalog based on CCD observations, obtained since 1995. The database also requires results if long-term observation series of ADS7251 and 61 Cygni. Presented material makes it possible to determine orbits and masses of double stars, and to perform various studies in stellar astronomy. publications

The on-line version of Pulkovo Visual Double Star Catalog contains the relative distances and positional angles of secondary component with respect to the main component referred to the mean-year dates (normal places).

JD	Epoch	S	e(S)	P	e(P)	N	N(S)	N(P)	e1 (S)

We were interested in comparing the errors at measurement of relative coordinates at each plate, so we used current version in different form:

			$\boldsymbol{\rho}$	$\begin{gathered} \Delta \boldsymbol{\rho} \\ \downarrow \\ \hline \end{gathered}$	$\boldsymbol{\theta}$	$\begin{gathered} \boldsymbol{\Delta} \boldsymbol{\theta} \\ \downarrow \\ \hline \end{gathered}$			\mathbf{n}_{1}		n_{2}		
ADS	00048	AB F	NOO	057+45	8.93	8.97	K6	M0	134				
1	365	1961.745	5.707	. 006	165.347	. 052	. 005	. 006	. 017	11	. 019	11	5201
2	389	1961.783	5.691	. 012	165.204	. 105	010	. 013	. 034	11	045	11	4201
3	2403	1968.779	5.809	. 006	168.347	. 063	006	. 006	. 025	16	024	16	15500
4	2413	1968.795	5.802	. 012	168.331	. 073	007	. 012	. 028	16	047	16	14100
5	2443	1968.819	5.807	. 011	168.535	. 068	. 007	. 011	. 028	17	. 048	18	13100
6	3686	1969.718	5.811	. 006	168.910	. 048	. 005	. 006	. 018	14	. 021	14	14100
7	3706	1969.731	5.843	. 007	168.944	. 058	. 006	. 006	. 025	18	. 027	18	14300
8	4695	1970.947	5.859	. 016	169.453	. 087	. 009	. 016	. 032	14	. 061	14	13100
9	4947	1971.744	5.872	. 006	169.740	. 078	008	. 007	. 033	17	028	17	15100
10	5000	1971.793	5.865	. 005	173.392	. 035	. 004	. 005	. 015	17	020	17	14100
11	5034	1971.848	5.849	. 007	169.964	. 071	. 007	7.007	. 028	15	. 026	15	14100
12	5775	1972.699	5.926	. 012	170.149	. 137	. 014	4.012	. 035	6	. 028	6	14100
13	5795	1972.708	5.887	. 009	170.241	. 089	. 009	. 009	. 037	16	. 035	16	15100
14	6512	1973.762	5.903	. 005	170.700	. 051	. 005	. 006	. 020	15	022	15	15100
		aveAs 3	4 Edit	5	6	7 Nex	t	8Table	9			Save	Q 11

ORWO

WO-1, WO-3
NP-27, NP-22
Kodak 103 OaD
yellow filter GS-18
5500 A

To obtain the separations and positional angles for nearly 300 pairs of double and multiple stars, approximately 8000 photographic plates were processed. Three mashines were used for measuring the plates:

UMAX POWER LOOK II

(2)

At the end of 90-s the Fantasy was perfect machine with exception of time needed for taking information from a plate - this long time was reason for decision for reconstruction of Fantasy

Accuracy of positional measurements 0.32 micron at possible 0.08 micron

At absence of financing, the efforts to improve the Fantasy resulted in prolonged reconstruction

Recently a new camera was worked into Fantasy which provides $500 \mathrm{px} / \mathrm{mm}$ scanner $48 \mathrm{px} / \mathrm{mm}$

ADS 8742

Just few days ago the new camera was maintained at Fantasy and results show the following accuracy at repeated measurement of the same plate
total number of measured plates 34
for plates of good quality the error 0.5 micron
for plates of bad quality the error 2.0 micron

DETERMINATION OF ORIENTATION

3) QUASI-SYMMETRIC TRAIL

$$
\begin{equation*}
\gamma=\frac{l \cdot \operatorname{tg} \delta}{f_{0}}\left(\frac{\mathbf{x}_{2}+x_{1}}{2}-x_{0}\right) \frac{1}{x_{2}-x_{1}} \tag{2}
\end{equation*}
$$

$\boldsymbol{l}=\mathbf{S}_{1} \mathbf{S}_{2}$ the length of the trail
$\boldsymbol{\delta}$ - declination of the star
$\boldsymbol{f}_{\boldsymbol{0}}$ - the telescope focal distance

Scanner
61 Cyg

Scanner
61 Cyg
asymmetric trail

The angle gamma and refraction are taken to account at computing the relative equatorial coordinates of component B with respect to component A (Kiselev 1988)

$$
\left.\begin{array}{l}
\xi=M_{0} x^{\prime}\left(1+\boldsymbol{\beta}\left(1+k_{1}^{2}\right)\right)+M_{0} y^{\prime}\left(2 \beta k_{1} k_{2}+\gamma\right) \\
\eta=M_{0} y^{\prime}\left(1+\boldsymbol{\beta}\left(1+k_{2}^{2}\right)\right)-M_{0} x^{\prime} \gamma
\end{array}\right\}
$$

β - coefficient of refraction
k_{1}, k_{2} - tangential coordinats of zenith at the plate
M_{0} - geometric scale of instrument

$$
\beta=\left(\beta_{1}+\beta_{2} \operatorname{tg}^{2} z\right) \frac{B}{1013} \frac{273^{\circ}}{t^{\circ}}
$$

$\beta_{1}=60^{\prime \prime} .31, \quad \beta_{2}=-0^{\prime \prime} .091-$ coefficients for spectral sensitivity range of instrument

$$
k_{1}=\frac{1}{\operatorname{tg} n_{2} \sin \left(n_{1}+\delta\right)} \quad k_{2}=\operatorname{ctg}\left(n_{1}+\delta\right) \quad \operatorname{tg} n_{1}=\operatorname{ctg} \varphi \cos t \quad \operatorname{tg} n_{2}=\frac{\sqrt{\sin ^{2} \varphi+\cos ^{2} \varphi \cos ^{2} t}}{\cos \varphi \sin t}
$$

Z - zenith distance of a pair
B, t° - atmospheric pressure and the temperature during taking the plate
φ - hour angle of the star
t - hour angle of the star

Table I Ascorecord-Scanner

ADS	2757	8236	10759	12815
${\underset{2000.0}{ }(\alpha, \delta)}^{2}$	$\begin{gathered} 03^{\mathrm{h}} 47.0^{\mathrm{m}} \\ +41^{\circ} 26^{\prime} \end{gathered}$	$\begin{gathered} 11^{\mathrm{h}} 36.6^{\mathrm{m}} \\ +56^{\circ} 08^{\prime} \end{gathered}$	$\begin{gathered} 17^{\mathrm{h}} 41.9^{\mathrm{m}} \\ +72^{\circ} 09^{\prime} \end{gathered}$	$\begin{gathered} 19^{\mathrm{h}} 41.8^{\mathrm{m}} \\ +50^{\circ} 32^{\prime} \end{gathered}$
$\begin{aligned} & \mathrm{mA} \\ & \mathrm{mB} \\ & \hline \end{aligned}$	$\begin{aligned} & 8.2 \\ & 8.8 \end{aligned}$	$\begin{aligned} & 7.3 \\ & 7.8 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 5.1 \\ & 5.3 \end{aligned}$
$\rho_{\text {SCA }}$	$\begin{aligned} & 7.399 " \\ & \pm .041 \end{aligned}$	$\begin{aligned} & 6.066^{\prime \prime} \\ & \pm .016 \end{aligned}$	$\begin{gathered} 30.122^{\prime \prime} \\ \pm .008 \end{gathered}$	$\begin{gathered} 39.333^{\prime \prime} \\ \pm .029 \end{gathered}$
$\Delta \rho_{(\text {ASC-SCA }}$	$\begin{gathered} +0.019 " \\ \pm .009 " \end{gathered}$	$\begin{aligned} & +0.034 " \prime \\ & \pm .008^{\prime \prime} \end{aligned}$	$\begin{aligned} & -0.036^{\prime \prime} \\ & \pm .007 " \end{aligned}$	$\begin{aligned} & +0.012^{\prime \prime} \\ & \pm .005^{\prime \prime} \end{aligned}$
$\theta_{\text {SCA }}$	$\begin{gathered} 53.651^{\circ} \\ \pm .170 \end{gathered}$	$\begin{gathered} 166.705^{\circ} \\ \pm .110 \end{gathered}$	$\begin{gathered} 15.549^{\circ} \\ \pm .037 \end{gathered}$	$\begin{gathered} 133.501^{\circ} \\ \pm .023 \end{gathered}$
$\Delta \theta_{\text {(ASC-SCA) }}$	$\begin{gathered} +0.074^{\circ} \\ \pm .055 \end{gathered}$	$\begin{gathered} +0.033^{\circ} \\ \pm .056 \end{gathered}$	$\begin{gathered} -0.035^{\circ} \\ \pm .024 \end{gathered}$	$\begin{gathered} -0.029^{\circ} \\ \pm .008^{\circ} \end{gathered}$
$\Delta \tau_{(\text {ASC-SCA }}$	$\begin{gathered} +0.010^{\prime \prime} \\ \pm .007 " \prime \end{gathered}$	$\begin{aligned} & +0.004 " \\ & \pm .006 " \end{aligned}$	$\begin{aligned} & -0.009 " \prime \\ & \pm .007 " \end{aligned}$	$\begin{aligned} & -0.020 " \\ & \pm .005 " \end{aligned}$
n0	17	11	26	34

n_{0} - number of the same plates measured with both Ascorecord and Scanner $\Delta \tau=\rho \Delta \theta(\pi / 180)$

ADS	48	14636
$(\alpha, \delta)_{2000}$	$00{ }^{\mathrm{h}} \mathrm{H}_{5} \mathrm{~m} .7$ $45^{\mathrm{h}} \mathbf{4 9} \mathrm{m}$	$\begin{gathered} 21^{\mathrm{h}_{06}} \mathrm{~m}_{.9}{ }^{38^{\mathrm{h}_{45} \mathrm{~m}}} \end{gathered}$
$\mathrm{m}_{\mathrm{A}}, \mathrm{m}_{\text {B }}$	$\begin{aligned} & 8.93 \\ & 8.97 \end{aligned}$	$\begin{aligned} & 5.20 \\ & 6.05 \end{aligned}$
$\overline{\boldsymbol{\rho}}$	$\begin{array}{r} 5.974 \\ \pm \quad 0.072 \end{array}$	$\begin{array}{r} 29.391 \\ \pm 0.706 \end{array}$
$\rho_{\text {sca }}-\rho_{\text {fan }}$	$\begin{array}{r} -0.006 \\ \pm 0.019 \end{array}$	$\begin{array}{r} -0.002 \\ \pm 0.023 \end{array}$
$\theta_{\text {sca }}-\theta_{\text {fan }}$	$\begin{array}{r} -0.074 \\ \pm 0.555 \end{array}$	$\begin{array}{r} -0.037 \\ \pm \quad 0.049 \end{array}$
$\tau_{\text {sca }}-\tau_{\text {fan }}$	$\begin{aligned} & -0.008 \\ & \pm 0.058 \end{aligned}$	$\begin{array}{r} -0.019 \\ \pm 0.025 \end{array}$
n	128	230

1) From investigations by Polyakov:

The stars located on a plate due to the atmospheric turbulance with deviations 1.5 -- 3.5 micron from the computed ones which are comparable with the size of the emulsion grain
2) If somebody is going to measure a log, he doesn't need micrometer

THE LONG-TIME HOMOGENEOUS SERIES MEASURED WITH THE SAME MACHINE ARE IMPORTANT

THE POSSIBLE LEVEL OF ACCURACY IS RESTRICTED TO THE CCUR ACY OF IMAGES LOCATION AT A PLAE

