# The need of long time series of observations for the natural planetary satellites

Valéry Lainey (IMCCE)





NAROO workshop 20-22 June 2012

Why shall we consider « old » ground observations at the time of space mission?

1- Because ephemerides are precise over a longer time span when a large time span of observations was used  $\rightarrow$  talk of J.E.Arlot



2- Because monitoring the long term evolution of moon orbits is sometimes the only way to assess physical parameters and internal state





## The terrible fate of Phobos





## <u>Question:</u> how much time will that take place?



(All these models were analytic)

Since the 90s the Martian moon ephemerides had drifted...



New ephemerides have been developed at JPL and IMCCE/ROB these last years to garantee a good accuracy of martian moon position in the context of MEX and MRO.

(both ephemerides are based on numerical integration)

See Lainey et al. (2007); Jacobson (2010)

Astrometric post-fit residuals for Phobos after fit of initial state vectors, Mars **dissipation factor Q** and Phobos' oblate parameters  $c_{20}$ ,  $c_{22}$ .



These ephemerides have been used by HRSC instrument (Mars Express/DLR) for the close Phobos flyby in 2008.

Estimation of Phobos tidal acceleration over time (Jacobson 2010):

| Reference                 | $s \times 10^{-3}$ | к2    | Q              | γ                                   |
|---------------------------|--------------------|-------|----------------|-------------------------------------|
|                           | $(\deg yr^{-2})$   |       |                | (deg)                               |
| Sharpless (1945)          | $1.882 \pm 0.171$  |       |                |                                     |
| Shor (1975)               | $1.427 \pm 0.147$  |       |                |                                     |
| Sinclair (1978)           | $1.326 \pm 0.118$  |       |                |                                     |
| Jacobson et al. (1989)    | $1.249 \pm 0.018$  |       |                |                                     |
| Chapront-Touzé (1990)     | $1.270 \pm 0.008$  |       |                |                                     |
| Emelyanov et al. (1993)   | $1.290\pm0.010$    |       |                |                                     |
| Bills et al. (2005)       | $1.367 \pm 0.006$  | 0.163 | $85.6 \pm 0.4$ | $0.3346 \pm 0.0014$                 |
| Rainey & Aharonson (2006) | $1.334 \pm 0.006$  | 0.153 | $78.6 \pm 0.8$ | $0^{\circ}.3645 \pm 0^{\circ}.0039$ |
| Lainey et al. (2007)      | $1.270 \pm 0.015$  | 0.152 | $79.9 \pm 0.7$ | 0°.3585 ± 0°.0031                   |
| Current (Jacobson 2010)   | $1.270\pm0.003$    | 0.152 | $82.8\pm0.2$   | $0^{\circ}.3458 \pm 0^{\circ}.0009$ |

Pretty good agreement since decades!

## Example of the Jovian system



#### Competition between tidal dissipation effects



## Secular deceleration on the mean motion



Secular acceleration on the mean motion

#### Example of the Jovian system



Our fit of Io's dissipation provides  $k_2/Q = 0.015 \pm 0.003$ 

One can compare our value with the ones derived from IR emission



We obtained a very good agreement and confirm the values derived from heat flux observations!

Example of the Jovian system

Our value of the Jovian dissipation is Q=35600  $\pm$  6600 assuming k<sub>2</sub>=0.379

The estimation from (Goldreich and Soter (1966), Gavrilov and Zharkov (1977))

 $2.5 \ 10^4 < Q_{jupiter} < 2.5 \ 10^5$ 



Our estimation gets a much smaller error bar AND it is derived from observations

Example of the Saturnian system





#### 0.1 arcsec ~ 600 km



→Residuals after fitting the initial state vectors of all the eight main Saturn moons, the ratio  $k_2/Q$  inside Saturn and a constant drift da/dt.

| Observation subset: | $\nu_s$        | $\sigma_s$  | $\nu_{\rm p}$                  | $\sigma_p$ | $N_s$ ,      | $N_p$     |              |
|---------------------|----------------|-------------|--------------------------------|------------|--------------|-----------|--------------|
| All Observations:   |                |             |                                |            |              |           |              |
| S1                  | 0.0140         | 0.1027      | 0.0131                         | 0.1152     | 1285, 1      | 1298      |              |
| S2                  | -0.0032        | 0.0988      | 0.0048                         | 0.1069     | $-2640, \pm$ | 2643      |              |
| S3                  | 0.0157         | 0.1130      | -0.0003                        | 0.1152     | 4702, 4      | 1700      |              |
| S4                  | 0.0150         | 0.1045      | 0.0023                         | 0.1096     | 3775, 3      | 3776      |              |
| S5                  | 0.0113         | 0.1088      | 0.0030                         | 0.1151     | 4471, 4      | 1489      |              |
| S6                  | 0.0238         | 0.0937      | -0.0049                        | 0.1084     | 2842, 1      | 2836      |              |
| S7                  | 0.0017         | 0.3275      | 0.1068                         | 0.4838     | 138, 1       | 113       |              |
| S8                  | 0.0179         | 0.0766      | 0.0076                         | 0.1246     | 1098, 1      | 1101      |              |
| Observation subset: | $\nu_{\alpha}$ | ccs(\delta) | $\sigma_{\alpha \cos(\delta)}$ | νδ         | σδ           | $N_{a}$ , | $N_{\delta}$ |
| All observations    |                |             |                                |            |              |           |              |
| S1                  | -0             | .0057       | 0.0952                         | -0.0108    | 0.0725       | 371,      | 371          |
| S2                  | 0.             | 0019        | 0.1040                         | 0.0028     | 0.1101       | 822,      | 822          |
| S3                  | -0             | .0199       | 0.1267                         | 0.0122     | 0.1067       | 1972,     | 1972         |
| S4                  | 0.             | 0020        | 0.1066                         | 0.0113     | 0.1067       | 2271,     | 2271         |
| S5                  | 0.             | 0047        | 0.0899                         | -0.0023    | 0.0863       | 2977,     | 2977         |
| S6                  | 0.             | 0121        | 0.1060                         | -0.0171    | 0.1070       | 3271,     | 3271         |
| S7                  | 0.             | 1098        | 0.2984                         | 0.0036     | 0.2166       | 973,      | 973          |
| S8                  | 0.             | 0140        | 0.1143                         | -0.0052    | 0.1155       | 2008,     | 2008         |

Lainey et al. (ApJ, 2012)

 $k_2/Q=(2.3 \pm 0.7) \times 10^{-4}$ ; da/dt= -(15.3 ± 4.0) × 10<sup>-15</sup> au/day. What if we release as free parameters one  $k_2/Q$  ratio per tide raising satellite...?



Tidal dissipation seems to be a smooth function of tidal frequency.

What if we release as free parameters one  $k_2/Q$  ratio per tide raising satellite...?



Tidal dissipation seems to be a smooth function of tidal frequency.

What if we release as free parameters one  $k_2/Q$  ratio per tide raising satellite...?



Tidal dissipation seems to be a smooth function of tidal frequency.

Hence, such strong dissipation **cannot** come from the atmosphere. → Strong tidal dissipation may arise in the icy core!!

## I had a dream...







## Let's make the dream come true









