Long-term photographic observations for selected objects of Pulkovo program Measurements comparison and results.

N.A.Shakht, A.A.Afanas'eva,
D.L.Gorshanov, E, V.Poliakow.

Photographical method has been applied at Pulkovo in 1874 г. during the passage of Venus along the disk of the Sun.
Such observations were made else some times and just now these have been repeated after 138 years.

The basis of development of photographic astrometry at Pulkovo have been laid by S.K.Kostinsky and have been continued by A.N.Deutsch.

Now we deal in our laboratory with plates, which have been obtained on Astrograph Carte du Ciel (since 1893 year) and on 26 " refractor (since 1956).

We would like to present some history of the study of some long-term observational series on the basis of measurements by means of different measurements-devices.

The authors of this report have the practice of using for the same objects some old devices and also the modern machine, because the observations of these objects were continued during many years and decades with the purpose of determinations of high precision positions and movements parameters,

Prof. Alexander Nikolaevich Deutsch with his teacher, the founder of a Department of Photographic Astrometry in Pulkovo, member-correspondent of the Academy of sciences Sergey Konstantinovich Kostinsky.

We will consider some series of double and single stars, which were of interest for researchers by peculiarities of their motion, dynamics, their origin and of the belonging to different stellar systems.

As a rule these are stars located near to the Sun. Some of them are interesting and perspective objects for the future space missions with the purpose of detection of planetary components.

In connection with it their inner structure and processes observed on their surface also in the center of attention of many specialists.

Some of them, for instance, 61 Cygni (ADS 14636) and ADS 7251 are entered in NASA STAR and Exoplanets Datebase as very important objects- Tier target stars) for observations in the future during space mission

The sheme of semi-automatic machine
"Ascorecord"
1972-2005

The Pulkovo Astrographic Measuring Machine (PAMM) E.V.Poliakow, Pulkovo, 1986.

$$
-13
$$

 pubapo как nogmbерияениe суиsembobaruua robox пианетньх сиетеш.
 camor ноиous us usbecmutw sbesgrevx mace.
 aburemes проиилитовньии ввенои меляу зlesgamu и пианераии.

Уevero guпиourow pavomv sиvo uceregoba ние могноети изиерения расетоятнию
 спиниаах, поиугенинх на 26 mи growuobou рефракторе и нориаишнои аетроряяре गуیкоbckoid os uрварории.

B aregyousei masulye gaemes onvicarve
nuаетикок:
Agfe Locencudur.

$$
\text { THaswuyce } 1 \text { a }
$$

aregyousei masurue garofas bureepe
 ske gus oymoed nursquercice u gises. ULOGFUHOK:
π ग्रnuza 3

Scheme of the PAMM structure and installation

Fig. 2. PAMM after reconstructon in 2005 year.

1. The beginning of reconstruction

Camera WAT, $1.7 \times 1.2 \mathrm{~mm}$ $\mathrm{px}: 2.88 \mathrm{x} 5.00 \mathrm{~m} \mu$

New camera $6.4 \times 4.8 \mathrm{~mm}, \mathrm{px}: 3 \times 3 \mathrm{~m} \mu$

Absolute nanoscale

Some technical details

Description of Positioning System of automatic machine "Fantasy"

The mobile part of the unit is a steel carriage with high precision orthogonal guide rails fastened to both sides.

The carriage is propelled by 2 linear electric motors; it moves on air bearings having 5-7 micron air gap above a table consisting of four plates measuring $500 \times 500 \mathrm{~mm}$ each.

The plates are made of non-magnetic stainless steel. A duralumin holder for photoplates is fastened to the carriage.
The carriage is moved an its position is measured with the help of a positioning system.

The positioning system based on RGH24 and RGH25 miniature positional contactless encoders and RGF0200H interpolators made by the Renishaw company.

The system of scanning of automatic

machine "Fantasy"

The system of scanning includes two cameras:

1) overview CCD camera WAT-704 with a field of vision $60 \times 40 \mathrm{~mm}^{2}$
2) measuring camera EVS-535 with a field 6×4 мм 2.

Both cameras are built in the uniform duraluminium platform established in the center of a table under the gaffer $80 \times 60 \mathrm{~mm}^{2}$.

The overview camera is intended for an identification of a plate with the catalogue and bindings of system of coordinates of a plate to system of the measuring machine.

By means of the measuring's camera is carried out the digitizing of a photographic plate continuously or for the selected fragments of the image.

$$
\begin{aligned}
& \text { Calculations of relative positions of double stars } \\
& \text { components. } \\
& X=M_{0} X\left(1+\beta\left(1+k_{1}^{2}\right)\right)+M_{0} Y\left(2 \beta_{\left.k_{1} k_{2}+\gamma\right)}^{Y=M_{0} Y\left(1+\beta\left(1+k_{2}^{2}\right)\right)-M_{0} X \gamma}\right. \\
& \rho=\sqrt{X^{2}+Y^{2}} \\
& \sigma_{\rho}=\sqrt{\sigma_{X}^{2} \sin ^{2} \theta+\frac{X}{Y}} \\
& \sigma_{\theta}=\frac{1}{\rho} \sqrt{\sigma_{X}^{2} \cos ^{2} \theta+\sigma_{Y}^{2} \sin ^{2} \theta} \\
& X_{2000}=\rho \sin \theta_{2000},
\end{aligned}
$$

How should be generally estimated the accuracy of measurements?

How errors of measurements were calculated?

I. Small field: relative positions of double stars components.
II. Wide field: object and reference stars.
I. Small field: relative positions of double stars components
n - the number of images on a plate; N - the number of plates in a year;
v - the deviation from mean image on one plate;
V - the deviation from one mean yearly position.

1) The error of one image (exposure): $\sigma_{1}=\sqrt{\frac{v v}{(n-1)}}$
2) The inner error of one plate: $\quad \sigma_{i}=\frac{\sigma_{1}}{\sqrt{n}}$
3) The external error of one plate: $\quad \sigma_{e}=\sqrt{\frac{V V}{N-1}}$
4) Error of mean annual normal place: $\quad \sigma_{a}=\sqrt{\frac{V V}{N(N-1)}}$
5) the error of the night of observations: $\quad \sigma_{n}=\sqrt{\left(\sigma_{e}\right)^{2}-\left(\sigma_{i}\right)^{2}}$

The first experience of measurements with Zatsiorsky automatic machine at Pulkovo in 1974.
The 16 plates of 26 " refractor with the star ADS 7251 have been used.

$\begin{aligned} & \text { ADS } \\ & 7251 \end{aligned}$	Automat		Blinkcomparator		Ascorecord	
$\sigma 1 x$	$3.4 \mu \mathrm{~m}$ (0."068)		$3.1 \mu \mathrm{~m}$	(0."062)		(0."052)
$\sigma 1 y$	3.2	(0.064)	2.9	(0.058)	2.6	(0.052)
Oix	1.0	(0.020)	0.8	(0.016)	0.7	(0.014)
Oiy	0.9	(0.018)	0.7	(0.014)	0.7	(0.014)
$\sigma a x$		$0{ }^{\prime \prime} .022$		0 ". 014		$0 " .008$
Oay		0". 028		0 ". 020		$0 " .009$

$\sigma 1 x y$ - error of one image; n - the number of images; $\mathbf{n}=\mathbf{1 6}$ $\sigma_{\mathrm{ix}}-$ error of one plate; $\quad \sigma_{\mathrm{ax}}$ - error of mean annual place;

N - the number of plates in one year; $\mathbf{N}=4$

Comparison of the accuracy of ADS 11632 measurements

	X (Ascor)	Y (Ascor)	X (Fant)	Y (Fant)
$\sigma_{1 \mathbf{x y}}$	$3.4 \mu \mathrm{~m}$ 68 mas	$4.1 \mu \mathrm{~m}$ 82 mas	$\begin{aligned} & 1.8 \mu \mathrm{~m} \\ & 36 \mathrm{mas} \end{aligned}$	$\begin{aligned} & 2.3 \mu \mathrm{~m} \\ & 46 \mathrm{mas} \end{aligned}$
$\sigma_{\text {ixy inner }}$	$\begin{array}{r} 1.1 \\ 21 \end{array}$	$\begin{aligned} & 1.3 \\ & 25 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 11 \end{aligned}$	$\begin{gathered} 0.7 \\ 14 \end{gathered}$
$\sigma_{\text {exy out }}$	$\begin{array}{r} 1.5 \\ 29 \end{array}$	$\begin{aligned} & 2.2 \\ & 43 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 18 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 29 \end{aligned}$
$\sigma_{n} \quad$ night	$\begin{aligned} & \hline 1.0 \\ & 20 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 35 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 14 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 25 \end{aligned}$
σ_{a}	$\begin{aligned} & 0.7 \\ & 13 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 18 \end{aligned}$	$\begin{array}{\|l} 0.4 \\ 8 \end{array}$	$\begin{aligned} & 0.7 \\ & 13 \end{aligned}$

Selected stars for measurements, processing and comparison.

N	Name	π	$\sigma_{\text {axy }}$	ΔT Time	$\underset{\text { plates }}{\mathbf{N}}$	Remarks
1	ADS 5983 ($\delta \mathrm{Gem}$)	0".064	0.'020	27	104	Ascor
2	$\begin{aligned} & \text { ADS } \\ & \mathbf{7 2 5 1} \end{aligned}$	0.163	0.006 /0.004	43	200	Ascor/Fant
3	Lal 21185*	0.397	0.016	33	93	Ascor
4	Gliese 623*	0.124	$0.011 / 0.007$	17	89	Ascor /Fant
5	$\begin{gathered} \hline \text { ADS } \\ 11632 \end{gathered}$	0.282	0.016/0.011	36	176	Ascor/Fant
6	$\begin{aligned} & \text { ADS } 14636 \\ & \text { (61 Cyg) } \end{aligned}$	0.287	$\begin{array}{\|l} 0.007-26 " \mathrm{ref} \\ 0.008 \quad-\mathrm{CdC} \end{array}$		$\begin{aligned} & 350-26 " \\ & 800-\mathrm{CdC} \\ & \text { plates } \end{aligned}$	Ascor/Fant (2 series of observations)
7	ADS 14710 control	0.002	0.008	21	170	Fant
8	51 Peg*	0.074	0.010	8	40	Fant

Accuracy of measurements. Single stars.

Name	Z	$\sigma_{1 x y}$ (error of one image)	$\sigma_{i x y}$ (inner error of a plate)	σ_{wy} (error of unit of the weight)	$\begin{aligned} & \sigma_{a} \\ & \text { (annual } \\ & \text { error) } \end{aligned}$	ΔT [years]
Lalande 21185 (Ascor)	24°	$\begin{aligned} & 0^{\prime \prime} .044 \\ & 2.2 \mu \mathrm{~m} \end{aligned}$	$\begin{aligned} & 0^{\prime \prime} .020 \\ & 1.0 \mu \mathrm{~m} \end{aligned}$	$\begin{aligned} & 0^{\prime \prime} .036 \\ & 1.8 \mu \mathrm{~m} \end{aligned}$	$\begin{aligned} & 0^{\prime \prime} .014 \\ & 0.7 \mu \mathrm{~m} \end{aligned}$	32
Gliese 623 (Ascor)	12°	$\begin{aligned} & 0^{\prime \prime} .038 \\ & 1.9 \mu \mathrm{~m} \end{aligned}$	$\begin{aligned} & 0^{\prime \prime} .017 \\ & 0.9 \mu \mathrm{~m} \end{aligned}$	$\begin{aligned} & 0^{\prime \prime} .042 / 0 .{ }^{\prime \prime} 036 \\ & 2.1 / 1.8 \mu \mathrm{~m} \text { *** } \end{aligned}$	$\begin{aligned} & 0^{\prime \prime} .011 \\ & 0.6 \mu \mathrm{~m} \end{aligned}$	17
Gliese 623 (Fant)		$\begin{gathered} 0^{\prime \prime} .028 \\ 1.4 \mu \mathrm{~m} \end{gathered}$	$\begin{aligned} & 0 \prime .012 \\ & 0.6 \mu \mathrm{~m} \end{aligned}$	$\begin{aligned} & 0^{\prime \prime} .038 / 0{ }^{\prime \prime} .033 \\ & 1.9 / 1 / 7 \mu \mathrm{~m} * * * \end{aligned}$	$\begin{aligned} & 0 \quad \text { ". } 007 \\ & 0.4 \mu \mathrm{~m} \end{aligned}$	17
$\begin{aligned} & 51 \mathrm{Peg} \\ & \text { (Fant) } \end{aligned}$	39°	$\begin{gathered} 0^{\prime \prime} .034 \\ 1.7 \mu \mathrm{~m} \end{gathered}$	$\begin{aligned} & 0^{\prime \prime} .016 \\ & 0.8 \mu \mathrm{~m} \end{aligned}$	$\begin{aligned} & 0^{\prime \prime} .031 \\ & 1.6 \mu \mathrm{~m} \end{aligned}$	$\begin{aligned} & 0^{\prime \prime} .010 \\ & 0.5 \mu \mathrm{~m} \end{aligned}$	8

*** - The errors are shown before the excluding of orbital motion of photocenter and after its excluding.

Accuracy of measurements. Double stars.

$\begin{aligned} & \text { Name } \\ & \text { ADS } \end{aligned}$	Z	ρ	$\Delta \mathrm{m}$		$\sigma_{i x y}$ one plate inner	$\begin{array}{r} \sigma_{\mathrm{axy}} \\ \text { annual } \end{array}$	$\underset{\substack{\text { annual } \\ \text { rho }}}{\sigma_{\mathrm{a}(\rho)}}$	$\sigma_{\mathrm{a}(\theta)}$
5983 (δ Gem) Ascor	38°	$6 "$	$4^{\mathrm{m} .} .8$	$\begin{aligned} & \hline 0 " .072 \\ & 3.6 \mu \mathrm{~m} \end{aligned}$	$\begin{aligned} & \hline 0 " .020 \\ & 1.0 \mu \mathrm{~m} \end{aligned}$	0". 018	0'. 020	$0^{\circ} .03$
$\begin{aligned} & 7251 \\ & \text { Ascor } \end{aligned}$	7°	17"	0.1	$\begin{array}{r} 0.052 \\ 2.6 \end{array}$	$\begin{array}{r} 0.014 \\ 0.7 \end{array}$	0.007	0.006	0.03
Fant				$\begin{array}{r} 0.032 \\ 1.6 \end{array}$	$\begin{array}{r} 0.008 \\ 0.4 \end{array}$	0.005	0.004	0.02
$\begin{aligned} & 11632 \\ & \text { Ascor } \end{aligned}$	0°	14"	0.8	$\begin{array}{r} 0.075 \\ 3.8 \end{array}$	$\begin{array}{r} 0.022 \\ 1.1 \end{array}$	0.016	0.014	0.04
Fant				$\begin{array}{r} 0.042 \\ 2.1 \end{array}$	$\begin{array}{r} 0.012 \\ 0.6 \end{array}$	0.011	0.012	0.03
$\begin{aligned} & 14634 \\ & (61 \mathrm{Cyg}) \\ & \text { Fant } \end{aligned}$	2°	30"	0.7	$\begin{array}{r} 0.028 \\ 1.4 \end{array}$	$\begin{array}{r} 0.007 \\ 0.4 \end{array}$	0.007	0.007	0.03

Wide field: object and reference stars.
The estimations of errors of object and relative stars.
I. The errors of one image:
$\sigma_{x 1}=\sqrt{\frac{1}{m-3} \sum_{i=1}^{m} \Delta_{x_{i}}^{2}}$,

$$
\sigma_{y 1}=\sqrt{\frac{1}{m-3} \sum_{i=1}^{m} \Delta_{y_{i}^{2}}^{2}}
$$

II. Errors of one plate (inner):

$$
\sigma_{x_{\mathrm{AMC}}}=\frac{\sigma_{x 1}}{\sqrt{m}}, \quad \sigma_{y_{\mathrm{AMC}}}=\frac{\sigma_{y 1}}{\sqrt{m}}
$$

Wide field: object and reference stars.

$$
\begin{aligned}
& X_{j}=C_{x}+\mu_{x}\left(t_{j}-t_{o}\right)+\pi P x \\
& Y_{j}=C_{y}+\mu_{y}\left(t_{j}-t_{o}\right)+\pi P y
\end{aligned}
$$

Solution of equations by means of least squares method.

Residuals O-C

$$
\begin{gathered}
X_{1}=C_{x}+\mu_{x\left(t_{1}-t_{o}\right)}+\pi P_{x} \\
X_{2}=C_{x}+\mu_{x\left(t_{2}-t_{o}\right)+\pi P x}
\end{gathered}
$$

$$
\begin{aligned}
& X_{o b s 1}-X_{c a l c 1}=V_{1} \\
& X_{o b s 2}-X_{\text {calc2 }}=V_{2}
\end{aligned}
$$

$$
X_{n}=C_{x}+\mu_{x\left(t_{n}-t o\right)}+\pi P_{x}
$$

$$
X_{o b s} n-X_{c a l c} n=V_{n}
$$

III. Error of the unit of weight :
(outer error of one plate)

$$
\sigma_{w}=\sqrt{\frac{V V}{n-m}}
$$

IV. Error of mean yearly normal place.

This error is calculated with taking into account residuals of individual plates within on year.

$$
\sigma_{a}=\sqrt{\frac{V V}{N-1}}
$$

Wide field: a single star + reference stars

V. The error of the reduction.

$$
\sigma_{r}=\sqrt{\sigma^{2_{m}}+\sigma_{\mu}^{2}\left(\Delta_{t}\right)^{2}}
$$

The error of reduction σr increases with the difference of epoques

$$
\sigma_{\mu}=\Sigma\left(\mu_{i} D_{i+\Delta \mu i}\right)
$$

For calculation of error of measurement of relative stars the difference of the moments Δt must be no more 1 year. We neglect of the second composed and received the error of one image for the "mean" star.

For instance, for Gliese 623 with $\Delta \boldsymbol{t}=0$:
Visual $\quad \sigma_{m}: \quad 2.1 \mu \mathrm{~m}$ and $2.4 \mu \mathrm{~m}$ for X, Y accordingly

Additional problem: the influence of a known or unknown optically unseen companion.

$$
\begin{array}{cc}
\left.X_{j}=C_{x}+\mu_{x(t j}-t_{o}\right)+\pi P_{x}-B \Delta X & \Delta X=\mathrm{B} x+\mathrm{G} y \\
Y_{j}=C_{y}+\mu_{y\left(t_{j}-t o\right)+\pi P_{y}-B \Delta Y} & \Delta Y=\mathrm{A} x+\mathrm{F} y \\
x=\cos E-e \quad y=\sin E \sqrt{1-e} & B=M 2 /(\mathrm{M} 1+\mathrm{M} 2)
\end{array}
$$

The consequence is : deviation in the stellar path, increasing of σw - units weight error and errors of all parameters .

The sample: Gliese 623.

Error of units of weight $\sigma_{w}=0$ "042 (Ascorecord) and 0". 038 (Fantasy)
After the exception of the influence of satellite

$$
\sigma_{w}=0 " .036(\text { Ascorecord }) \text { and } 0 " .033 \text { (Fantasy) }
$$

Plot of AC48NEW.x us AC4BNEW.tim

Periodic deviations from rectilinear movement of the photocenter of systemGliese 623A + Gliese 623B

Periodic deviations from rectilinear movement of the photocenter of system
Gliese 623A + Gliese 623B, received in Pulkovo and caused by an attraction of the optically invisible satellite with mass 0.098 solar masses and with period 3.76 years

On the abscisses axis a phase angle is shown, on an axis of ordinates - the periodic displacement (O-C)y in milliseconds in a projection on RA .

The differences Ascorecord - "Fantasy" for Gliese 623 (AC48 ${ }^{\circ}$ 1595/1589) in mean positions on RA projection.

Systematic differences in separations of double stars have been revealed:

Visual-auto	$0 . " 030$	0.004	for ADS 11632
	0.018	0.004	for ADS 7251
	0.048	0.004	for ADS 14636

51 Peg

Orbit and mass estimation of 61 Cygni

- 61 Cyg
- semi-axis major
- excentricity
- inclination
- longitude of periastron
- P.A. of ascending node
- period
- epoch of periastron passage
- Comparison with ephemeris
- (Pulkovo)
- (O-C) ρ (O-C) θ

$$
\begin{array}{cc}
a= & 82.2 \pm 2 \text { a.u. } \\
e= & 0.49 \pm 0.03 \\
i=129^{\circ} \pm 2^{\circ} \\
\omega= & 149.5^{\circ} \pm 6^{\circ} \\
\Omega=1780^{\circ} \pm 2^{\circ} \\
P=678 \pm 34 \\
T o=1709 \pm 16
\end{array}
$$

Comparison with CCD-observations
(O-C) ρ
0". 024
$M A=0.71 \quad 0.10 M \odot ; \quad M$ в $=0.49 \quad 0.07 M \odot$.

Comparison of visual (Ascorecord) and automatic ("Fantasy")measurements

Orbit of photocenter Gliese 623.

- semi-axis major

$a=$	$0 " .053$	$0 . " 006$	0.053
$e=$	0.51	0.03	0.51
$i=141^{\circ}$	5°	141	
$\omega=$	289°	10°	265
$\Omega=$	149°	10°	126
$P=$	$3 . y^{\circ} 76$	0.10	3.76
$T o=$	$1984 y^{y r} .3$	10	$1984{ }^{y r} .3$

- excentricity
- inclination
- longitude of periastron
- P.A. of ascending node
- Period
- epoch of periastron passage
$T o=1984{ }^{y r} .310$
- The low limit of the mass of unseen satellite $0.09 \quad 0.03$ Solar masses.

Orbit of double star ADS 11632

- semi-axis major
- excentricity
- inclination
- longitude of periastron
- P.A. of ascending node
- period
- epoch of periastron passage

$\mathbf{a}=$	$27^{\prime \prime} .3$	$26^{\prime \prime} .7$
$\mathbf{e}=$	0.43	0.42
$\mathbf{i}=$	$106^{\circ} .6$	$106^{\circ} .7$
$\omega=$	$318^{\circ} .4$	$318^{\circ} .9$
$\Omega=$	$145^{\circ} .0$	$145^{\circ} .2$
$\mathrm{P}=$	$1124^{\mathrm{yr}} .4$	$1092^{\mathrm{yr}} .7$
$\mathrm{To}=$	$1834^{\mathrm{yr}} .2$	$1835^{\mathrm{yr}} .9$

Calculation of geometrical scale Mo .

$$
M_{0}=\frac{1}{F}
$$

$$
\begin{aligned}
& \Delta \sigma_{*}=\Delta \sigma_{1}-0.0457 \mu \frac{\mathbf{\}_{\alpha\left({ }^{\circ}\right)} \cos \bar{\delta}^{\overline{2}}}{\Delta \sigma_{1}^{(o)}}\left[\mathbf{Q}^{(0)} \sin \bar{\delta}^{\overline{2}}+\boldsymbol{\}_{\delta^{(0)}}{ }^{\overline{2}}\right] \\
& \Delta \sigma_{1}=\sqrt{225 \alpha_{\alpha}^{(s)} \cos \bar{\delta}^{\overline{2}}+_{\delta^{(")}}{ }^{\overline{2}}} \quad \Delta_{s}=\sqrt{\Delta x x^{2}+\Delta y^{2}} \\
& M_{0}=M_{*}\left\{1+r^{\prime 2}+\frac{\Delta_{s^{\prime}}}{12}-\frac{p^{\prime 2}}{2}-\beta\left[1+\left(\frac{\Delta_{x}}{\Delta_{s}} k_{1}+\frac{\Delta_{y}}{\Delta_{s}} k_{2}\right)^{2}\right]\right\}
\end{aligned}
$$

The change of geometrical scale.
The stars on the plates with 61 Cygni have been used.

The change of geometrical scale.
The stars on the plates with 61 Cygni and ADS 7251 have been used.

The change of M_{0} with the temperature.

Conclusion

- We sumed up a history of measurements and processings of long-term numbers of observations at Pulkovo.
- Owing to automatic measurements we managed to process greater data files, and to test process of measurements, counting accuracy of measurements by means of the formulas accepted in astrometry.
- On automatic measurements for two stars 61 Cygni and ADS 7251 for the first time the mass-ratio is received, also the change of geometrical scale is revealed for the refractor.
- .
- Automatic measurements have confirmed those periodic fluctuations in movements of stars which have been found out at visual measurements earlier.
- Our stars are very interesting objects, and old plates can contain very interesting information which we have not else exhausted.
- We wish to all colleagues of success and overcoming of difficulties in development and in the mastering of new technics.

