

Asteroid data mining and precoveries in the Gaia era

W. Thuillot, D. Bancelin, J. Desmars, D. Hestroffer

Willliam.Thuillot@imcce.fr

IMCCE-Paris Observatory

Asteroid data mining and precoveries in the Gaia era

Interest of ancient observations for asteroids?

Improvement of ...

- > the orbital elements / ephemerides
- > orbital caracterization and identification
- > observations connection
- > predictions of events (stellar occ., ...)
- > impact risk assessment (PHAs)
- => Strong interest for NEAs / PHAs science

Asteroid data mining and precoveries in the Gaia era

Outline

- > Asteroid database and precision: global overview
- > Data mining: what are the possibilities / what impact?
- > The 99 942 Apophis case

Asteroid database and precision: global overview

From Minor Planet Center (http://www.minorplanetcenter.net/)

Astrometric measurements

code	type	number	percentage	timespan
C	CCD	82 849 054	93.74%	1986-2012
S/s	Satellite observation	4 006 902	4.53%	1994-201
	HST	3 5 4 4	0.09%	1994-2010
	Spitzer	114	0.00%	2004-2004
	WISE	4 003 244	99.91%	2010-2011
A	Observations from B1950.0 converted to J2000.0	647 649	0.73%	1802-199
c	Corrected without republication CCD observation	462 065	0.52%	1991-200
P	Photographic	352 113	0.40%	1898-201
T	Meridian or transit circle	26 968	0.03%	1984-200
X/x	Discovery observation	16706	0.02%	1891-201
M	Micrometer	12 081	0.01%	1845-195
Н	Hipparcos geocentric observation	5 4 9 4	0.01%	1989-199
R/r	Radar observation	1 602	0.00%	1968-200
E	Occultations derived observation	1571	0.00%	1961-201
V	"Roving observer" observation	372	0.00%	2000-201
n	Mini-normal place derived from averaging observations from video frames	93	0.00%	2009-201
e	Encoder	16	0.00%	1993-199

J. Desmars et al. 2012 in preparation

From Minor Planet Center (http://www.minorplanetcenter.net/)

Astrometric measurements

code	type	number	percentage	timespan
C	CCD	82 849 054	93.74%	1986-2012
S/s	Satellite observation	4 006 902	4.53%	1994-2011
	HST	3 5 4 4	0.09%	1994-2010
	Spirzer	114	0.00%	2004-2004
	THE	4 003 244	99 010	2010-2011
A	Observations from B1950.0 converted to J2000.9	647 649	0.73%	1802-1999
c	Corrected without republication CCD observation	462 065	0.52%	1991-200
P	Photographic	352 113	0.40%	1898-201
T	Meridian or transit circle	26 968	0.03%	1984-200
X/x	Discovery observation	16706	0.02%	1891-2010
M	Micrometer	12 081	0.01%	1845-195
Н	Hipparcos geocentric observation	5 4 9 4	0.01%	1989-199
R/r	Radar observation	1 602	0.00%	1968-200
E	Occultations derived observation	1571	0.00%	1961-201
V	"Roving observer" observation	372	0.00%	2000-2010
n	Mini-normal place derived from averaging observations from video frames	93	0.00%	2009-201
e	Encoder	16	0.00%	1993-1995

J. Desmars et al. 2012 in preparation

From AstDyS-2 (http://hamilton.dm.unipi.it/astdys/)

type	name	number of measurement	percentage of accepted measurement	accuracy	
C	CCD	73 938 542	99.48%	0.401	arcsec
S	Wise	1 497 360	99.89%	0.579	arcsec
S	Hubble Space Telesc.	867	96.54%	0.577	arcsec
S	Spitzer	48	33.33%	1.672	arcsec
A	B1950 to J2000	631 982	81.68%	1.175	arcsec
c	Corrected CCD obs.	419 070	99.68%	0.509	arcsec
P	Photographic	345 698	93.17%	1.088	arcsec
T	Meridian/transit circle	26 968	99.74%	0.288	arcsec
M	Micrometer	12 081	90.65%	1.896	arcsec
H	Hipparcos obs.	5494	100.00%	0.201	arcsec
E	Occultations	1570	100.00%	0.126	arcsec
R	Ranging	546	95.79%	5.695	km
R	Doppler	401	99.00%	7.128	km/s
V	Roving observer	356	49.72%	0.829	arcsec
e	Encoder	16	100.00%	0.557	arcsec

J. Desmars et al. 2012 in preparation

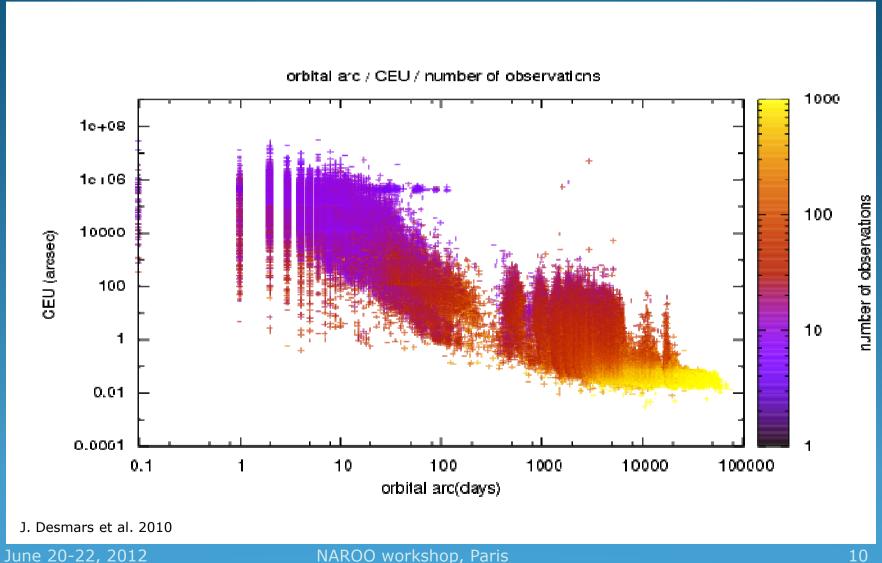
From AstDyS-2 (http://hamilton.dm.unipi.it/astdys/)

type	name	number of measurement	S)		accuracy	
C	CCD	73 938 542	99.48%	0.401	arcsec	
S	Wise	1 497 360	99.89%	0.579	arcsec	
S	Hubble Space Telesc.	867	96.54%	0.577	arcsec	
S S	Spitzer	48	33.33%	1.672	arcsec	
A	B1950 to J2000	631 982	81.68%	1.175	arcsec	
c	Corrected CCD obs.	419 070	99.68%	0.509	arcsec	
P	Photographic	345 698	93.17%	1.088	arcsec	
T	Meridian/transit circle	26 968	99.74%	0.288	arcsec	
M	Micrometer	12 081	90.65%	1.896	arcsec	
H	Hipparcos obs.	5494	100.00%	0.201	arcsec	
E	Occultations	1570	100.00%	0.126	arcsec	
R	Ranging	546	95.79%	5.695	km	
R	Doppler	401	99.00%	7.128	km/s	
V	Roving observer	356	49.72%	0.829	arcsec	
e	Encoder	16	100.00%	0.557	arcsec	

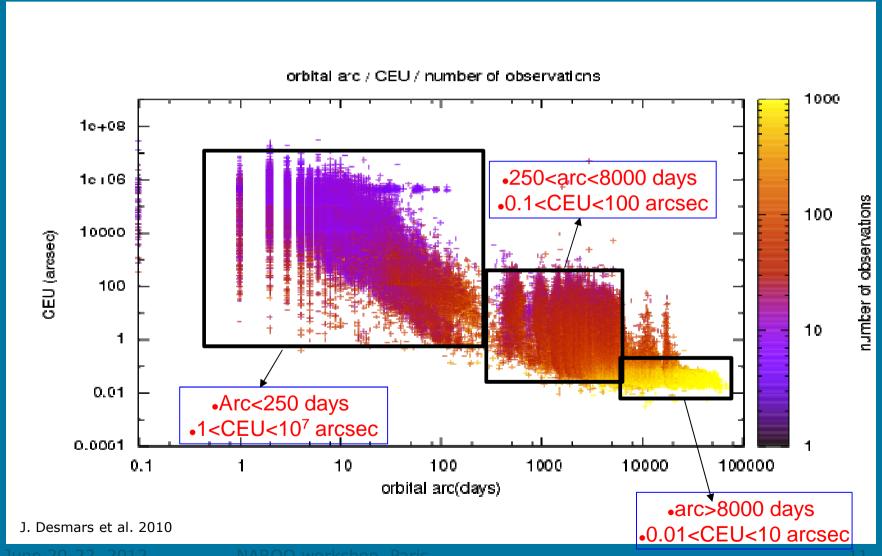
J. Desmars et al. 2012 in preparation

Uncertainty parameters

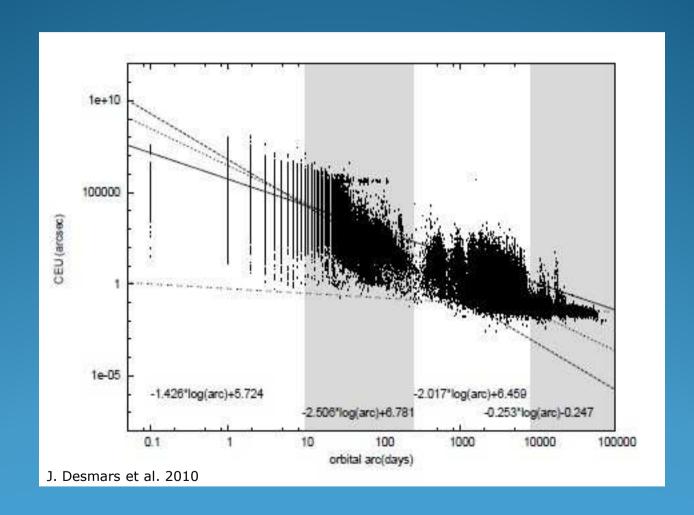
- From Lowell obs. (Bowell E.) (ftp://ftp.lowell.edu/pub/elgb/astorb.html)
- > ASTORB database provides five parameters measuring uncertainty


Sky plane uncertainty at a given date

- <u>CEU</u> (arcsec): current 1-σ uncertainty
- c CEU rate (arcsec/day)
- □ Date of CEU
- □ **PEU** (arcsec) : next peak uncertainty
- □ *Greatest PEU*: (arcsec) : 2 parameters:
- (1): greatest PEU in 10 years from date of CEU
- (2): greatest PEU in 10 years from date of PEU



ASTORB data base


ASTORB data base

Precision vs. Length of arc

Datamining: what are the possibilities / what impact ?

Data mining

Search for precovery data (pre-discovery recoveries)?

- Skybot web service (skybot.imcce.fr):
 pre-computed ephemeris (see talks by J. Berthier + M. Birlan)
- Different approaches:
 - ✓ Intensive data mining of large source databases
 - ✓ Mining of a survey catalogue > list of new obs. of asteroids
 - Mining a collection of catalogues > to get astrom. of one peculiar target
- Some limitations for astrometry (timing, reduction, faintness, metadata,...)

Re-reduction

Method to use for extending the period of observation?

by applying Re-reduction to:

- > prioritary objects: PHA, space mission targets,...
- > selected CCD frames
- > selected digitized photographic plates

- ✓ The best stellar astrometry possible=> the best accuracy of asteroid positioning
- ✓ Impact of the future Gaia catalogue?

http://www.minorplanetcenter.net/

99 942 Apophis Discov.: 2004 June 19 MPC Operations Status

MPC Status Page

Observer Services (NEOs)

NEO Services Overview NEO Confirmation NEO Confirmation (RA order) NEO Ratings

NEO Page

NEO Observation Planning Aid NEOChecker

NEOCMTChecker NEOCP Blog

Observer Services

Services Overview Minor Planet & Comet Ephem. Natural Satellite Ephemerides New Object Ephemerides MPChecker CMTChecker Distant Artificial Satellites

Observing List Customizer

Sky Coverage Databases

MPC Database Light Curve Database

Orbital Elements

Orbital Elements Overview MPCORB Orbital Elements for Programs MPCAT MPCUPDATE

Astrometric Observations

MPCAT-OBS MPCOBS

Publications

Publications Overview MPC Archive MPC RSS Feeds CBAT RSS Feeds

Minor Body Astrometry What's New

Lists and Plots

Lists and Plots Overview Critical-List Minor Planets Minor Planets Comets **Animations**

General

MPC Blog Contact Us Index Site Map

Minor Planet Center

(99942) Apophis = 2004 MN4

Discovered at Kitt Peak on 2004-06-19 by R. A. Tucker, D. J. Tholen, and F. Bernardi. (99942) Apophis = 2004 MN4

Also known as Apep, the Destroyer, Apophis is the Egyptian god of evil and destruction who dwelled in eternal darkness. As a result of its passage within 40 000 km of the earth on 2029 Apr. 13, this minor planet will move from the Aten to the Apollo class. [Ref: Minor Planet Circ. 54567]

Orbit

Orbit type: Aten Potentially Hazardous Asteroid Critical list numbered object.

Interactive Orbit Sketch

Note: WebGL enabled browsers only (e.g. Firefox, Safari, Chrome, Opera), but not IE.

epoch	2012-03-14.0
epoch JD	2456000.5
perihelion date	2011-10-31.07810
perihelion JD	2455865.57810
argument of perihelion (°)	126.42424
ascending node (°)	204.42933
inclination (°)	3.33194
eccentricity	0.1910904
perihelion distance (AU)	0.7460538

semimajor axis (AU)	0.9222957
mean anomaly (°)	150.13477
mean daily motion (°/day)	1.11275310
aphelion distance (AU)	1.09900
period (years)	0.89
P-vector [x]	0.87281527
P-vector [y]	-0.46431986
P-vector [z]	-0.15033488
Q-vector [x]	0.48745844
Q-vector [y]	0.81419717
Q-vector [z]	0.31538427
absolute magnitude	19.2
phase slope	0.15

uncertainty	0
reference	MPO 231943
observations used	1512
oppositions	2
arc length (days)	2976
first opposition used	2004
last opposition used	2012
residual rms (arc-secs)	0.40
perturbers coarse indicator	M-v
perturbers precise indicator	003Eh
first observation date used	2004-03-15.0
last observation date used	2012-05-08.0
computer name	MPCW

Observations

1519 total observations over interval: 2004 03 15.10789 - 2012 05 08.27193 These data are available for download (format description).

« Previous 1 2 Next »

Date (UT)	J2000 RA	J2000 Dec	Magn	Location	Ref
2004 03 15.10789	04 06 08.08	+16 55 04.6		691 - Steward Observatory, Kitt Peak-Spacewatch	MPS 126394
2004 03 15.11039	04 06 08.58	+16 55 06.1		691 - Steward Observatory, Kitt Peak-Spacewatch	MPC 53585
2004 03 15.12365	04 06 11.75	+16 55 15.5		691 - Steward Observatory, Kitt Peak-Spacewatch	MPC 53585
2004 03 15.12628	04 06 12.40	+16 55 17.7		691 - Steward Observatory, Kitt Peak-Spacewatch	MPC 53585
2004 03 15.13723	04 06 14.90	+16 55 25.4		691 - Steward Observatory, Kitt Peak-Spacewatch	MPC 53585
2004 03 15.13998	04 06 15.58	+16 55 27.1		691 - Steward Observatory, Kitt Peak-Spacewatch	MPC 53585
2004 06 19.17015	09 44 29.658	+13 18 50.95		695 – Kitt Peak	MPC 54280
2004 06 19.17015	09 44 29.658	+13 18 50.95		695 – Kitt Peak	MPC 54280
2004 06 19.170150	09 44 29.677	+13 18 50.67		695 – Kitt Peak	MPS 298141
2004 06 19.17486	09 44 30.584	+13 18 46.78		695 – Kitt Peak	MPC 54280
2004 06 19.174861	09 44 30.604	+13 18 46.81		695 – Kitt Peak	MPS 298141
2004 06 19.179676	09 44 31.507	+13 18 42.91		695 – Kitt Peak	MPS 298141
2004 06 19.17968	09 44 31.494	+13 18 43.09	20.9 R	695 – Kitt Peak	MPC 54280
2004 06 20.15951	09 47 41.080	+13 05 24.97		695 – Kitt Peak	MPC 53585
2004 06 20.159514	09 47 41.116	+13 05 24.49		695 – Kitt Peak	MPS 298141
2004 06 20.164317	09 47 42.006	+13 05 20.50		695 – Kitt Peak	MPS 298141
2004 06 20 16422	00 47 42 010	±12 05 20 00	20 7 D	ERE Kitt Dook	MDC 52505

MPCObs

Datamining 6 obs in 2004 March

June 20-22, 2012

http://www.minorplanetcenter.net/

Toutatis Discov.: 1989

Datamining: 2 obs in 1934 2 in 1976 5 in 1988 2 in 1989

June 20-22, 2012

Processing (Info)

NEO Services Overview

NEO Confirmation (RA order)

NEO Observation Planning Aid

Natural Satellite Ephemerides New Object Ephemerides MPChecker CMTChecker Distant Artificial Satellites Observing List Customizer Sky Coverage Databases MPC Database Light Curve Database **Orbital Elements** Orbital Elements Overview MPCORB

Orbital Elements for Programs

MPCUPDATE **Astrometric Observations** MPCAT-OBS

MPCOBS

MPECs

Publications Publications Overview

MPC Archive

MPC RSS Feeds

CBAT RSS Feeds Documentation

ECS: Accessible

MPC Status Page Observer Services (NEOs)

NFO Confirmation

NEO Ratings

NEOChecker NEOCMTChecker

NEOCP Blog **Observer Services**

Services Overview Minor Planet & Comet Ephem

NEO Page

4179) Toutatis = 1934 CT = 1989 AC

Discovered at Caussols on 1989-01-04 by C. Pollas. (4179) Toutatis = 1989 AC

Named after the Gaulish god, protector of the tribe. This totemic deity is well known because of the cartoon series "Les aventures d'Asterix" by Uderzo and Goscinny. This tells the stories of two almost fearless heroes living in the last village under siege in Roman-occupied Gaul in 50 B.C., and whose only fear is that the sky may fall onto their heads one day. Since this object is the Apollo object with the smallest inclination known, it is a good candidate to fall on our heads one of these days... But as the chief of the village always says: "C'est pas demain la veille..." Citation written by the discoverer and A. Maury and endorsed by J. D. Mulholland, who with Maury obtained the discovery plates. [Ref: Minor Planet Circ. 16444]

Orbit

Orbit type: Apollo Potentially Hazardous Asteroid

Interactive Orbit Sketch Note: WebGL enabled browsers only (e.g. Firefox, Safari, Chrome, Opera), but not IE.

epoch	2012-03-14.0
epoch JD	2456000.5
perihelion date	2012-11-15.66551
perihelion JD	2456247.16551
argument of perihelion (°)	278.55539
ascending node (°)	124.50744
inclination (°)	0.44602
eccentricity	0.6294330
perihelion distance (AU)	0.9373236

semimajor axis (AU)	2.5294312
mean anomaly (°)	299.56644
mean daily motion (°/day)	0.24500210
aphelion distance (AU)	4.12200
period (years)	4.02
P-vector [x]	0.73058074
P-vector [y]	0.62950313
P-vector [z]	0.26453276
Q-vector [x]	-0.68279618
Q-vector [v]	0.66985907
Q-vector [z]	0.29168167
absolute magnitude	15.3
phase slope	0.1

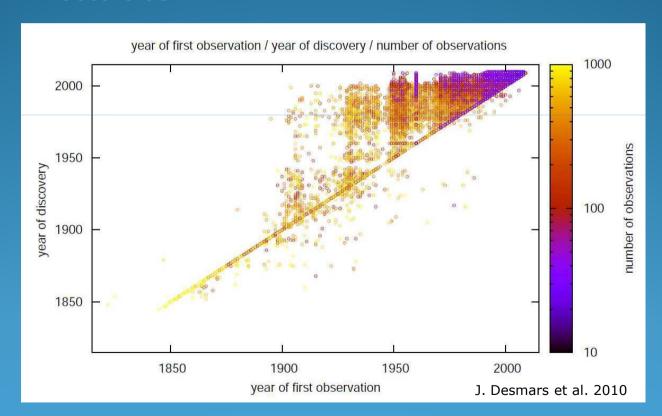
uncertainty	0
reference	MPO 231432
observations used	3383
oppositions	21
arc length (days)	13150
first opposition used	1976
last opposition used	2012
residual rms (arc-secs)	0.44
perturbers coarse indicator	M-h
perturbers precise indicator perturbers precise indicator	003Eh
first observation date used	1976-05-27.0
last observation date used	2012-05-28.0
computer name	MPCLINUX

Observations

3501 total observations over interval: 1934 02 10.01990 - 2012 05 28.42983 These data are available for download (format description).

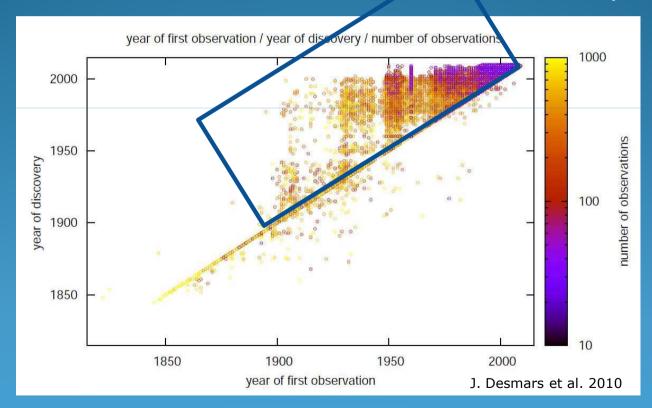
« Previous 1 2 3 4 Next »

CBAT RSS Feeds						
Documentation	Date (UT)	J2000 RA	J2000 Dec	Magn	Location	Ref
	1934 02 10.01990	08 50 26.58	+18 13 36.1		012 – Uccle	RI 928
Minor Body Astrometry	1934 02 14.89925	08 45 57.57	+18 32 14.2		012 – Uccle	RI 928
What's New	1976 05 27.66280	19 14 02.81	-21 58 05.4		260 - Siding Spring Observatory-DSS	MPS 55591
Lists and Plots	1976 05 27.69058	19 14 02.02	-21 58 07.1		260 - Siding Spring Observatory-DSS	MPS 55591
Lists and Plots Overview	1988 07 12.34479	19 56 57.15	-20 28 48.4	16.8	675 – Palomar Mountain	MPC 14430
Critical-List Minor Planets	1988 07 13.24774	19 55 39.15	-20 32 37.9		675 – Palomar Mountain	MPC 14430
Minor Planets Comets	1988 07 16.36319	19 50 54.01	-20 46 19.2		675 – Palomar Mountain	MPC 18557
Animations	1988 07 17.35243	19 49 18.96	-20 50 47.9	17	675 – Palomar Mountain	MPC 14290
General	1988 07 17.38628	19 49 15.60	-20 50 56.2		675 – Palomar Mountain	MPC 14290
MPC Blog	1989 01 03.21615	03 19 04.66	+16 26 27.0	11.5	675 – Palomar Mountain	MPC 14126
Contact Us	1989 01 03.22101	03 19 07.21	+16 26 39.6		675 – Palomar Mountain	MPC 14126
Index Site Map	1989 01 04.81250	03 39 07.37	+17 48 54.2		010 – Caussols	MPC 14088
Links	1989 01 04.85428	03 39 37.07	+17 50 51.3		010 – Caussols	MPC 14088
Minor Planet Center	1989 01 04.87014	03 39 47.67	+17 51 33.8		010 – Caussols	MPC 14088
Central Bureau for Actro. Tel.	1989 01 04.91181	03 40 17.12	+17 53 28.6	12	010 - Caussols	MPC 14088
Cometary Science Archive	1989 01 05.09305	03/53 50.08	18 44 10.6		801 – Oak Ridge Observatory	MPC 14129
Smithsonian Astro. Obs.	1989 01 06 24111	03 55 26 35	+18 40 40 8		801 - Oak Ridge Observatory	MPC 14120



Year of discovery / year of first observation

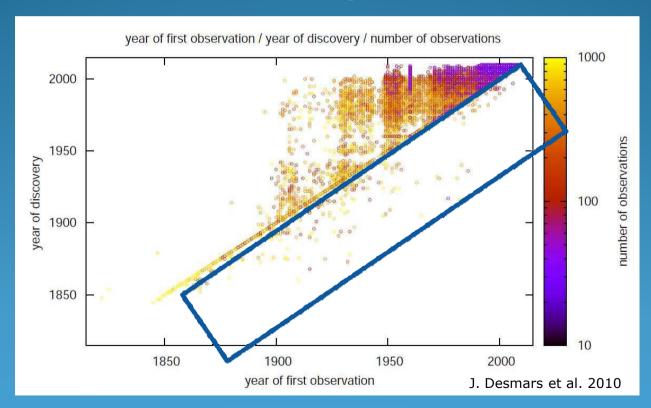
380 000 : Global view of the data issued from data mining asteroids



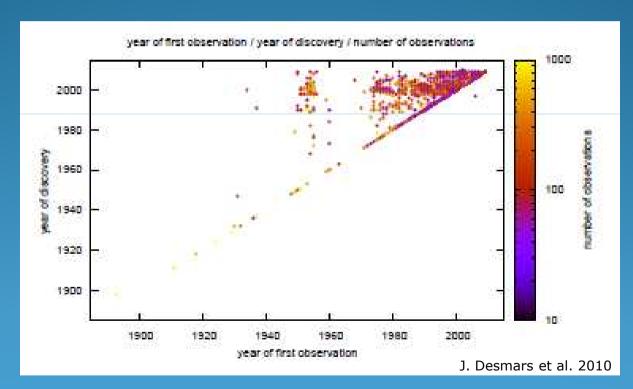
Date discovery > date 1st obs.
Measurements done through data mining:

380 000 asteroids

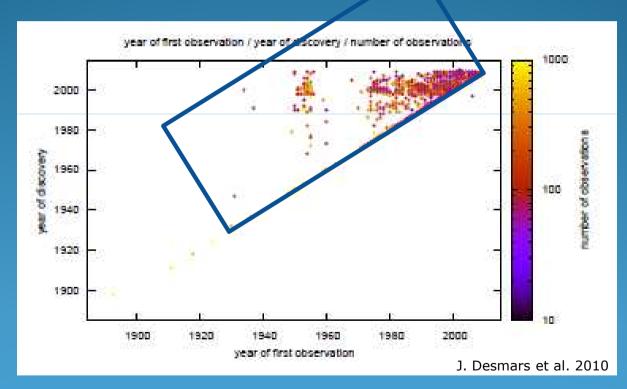
273 970 (71%)



380 000 asteroids

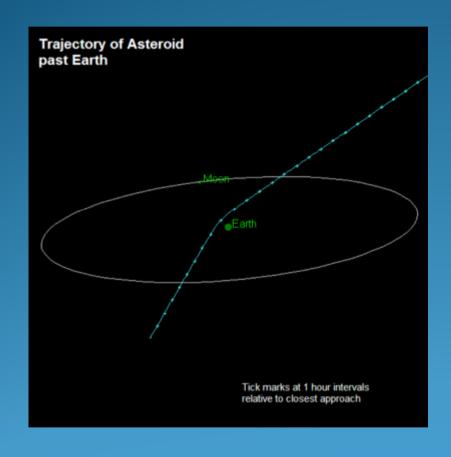

Date discovery < date 1st obs. 1st observation too unprecise? not registered as date of discovery

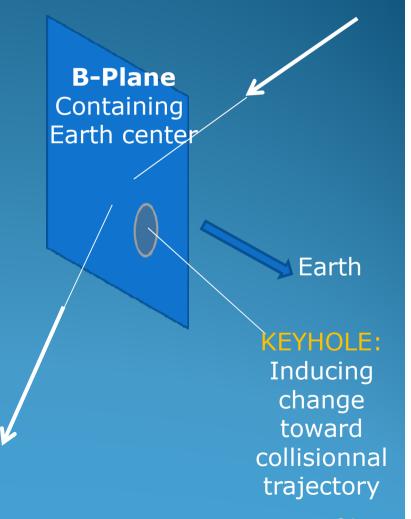
Only NEAs 2691



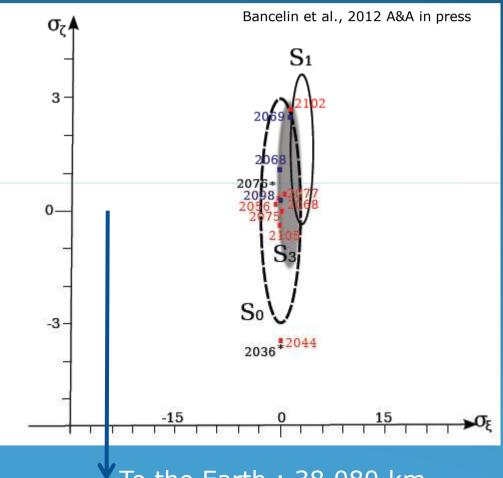
782 NEAs (29%)

Only NEAs 2691




Case of 99942 Apophis

Bessel plane / Keyholes



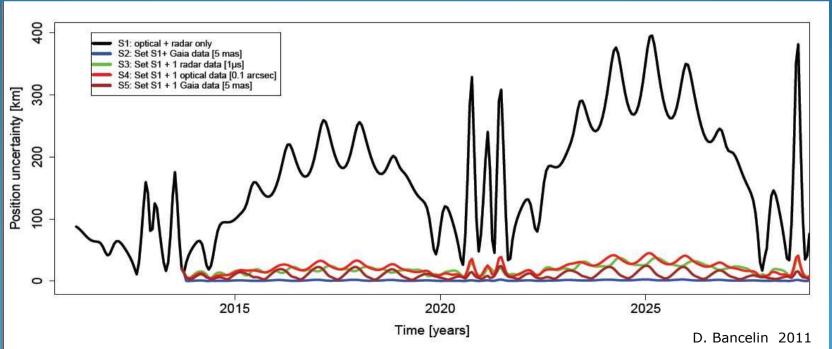
B-plane of 99942 Apophis

Apophis 2029 B-plane

- obs. 2004-2011
- 3σ uncertainty ellipses
- S0: 15 km x 350 km
- S3: 15 km x 245 km
- Keyholes

Year	Resonance	Keyhole size
2034	5:4	560
2035	6:5	560
2036	7:6	610
2037	8:7	570
2046	17:15	660
2048	19:17	410

To the Earth: 38 080 km



Impact of direct Gaia observations on the orbital model of 99942 Apophis

- simul. direct Gaia obs. of Apophis
- Propagation of error
- covariance matr. Tech.

Position known to less than 50 km on the period

- Sets of observations
- S1: optical 2004-2011 + radar
- S2: S1 + 12 Gaia obs. (5mas)
- S3: S1 + 1 radar in 2013 (1 µs)
- S4: S1 + 1 optical (100 mas)
- S5: only 1 observation by Gaia (5 mas)

Current stellar catalogues:

- > Systematic errors => impact on the asteroid orbital models
- Estimate of biases => Zonal corrections

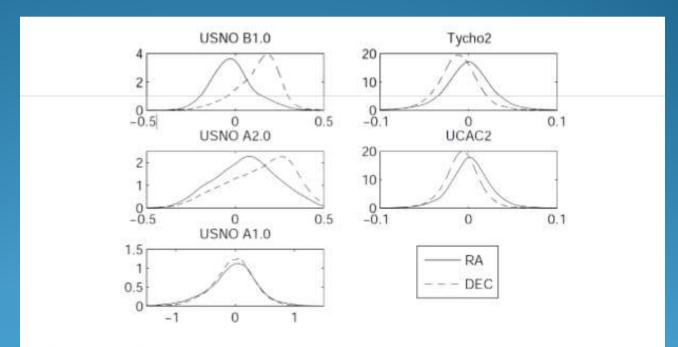
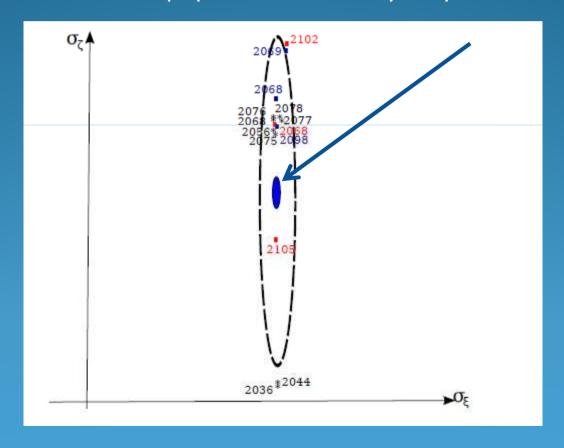


Figure 5.2: Probability densities of inter-catalogue systematic errors, as compared to the 2MASS catalog. For each plot, the abscissa is the difference in arcsec between the given catalogue and 2MASS and the ordinate is the associated probability density in arcsec⁻¹. Note that the plots are not all on the same scale (source: Chesley et al. (2009))

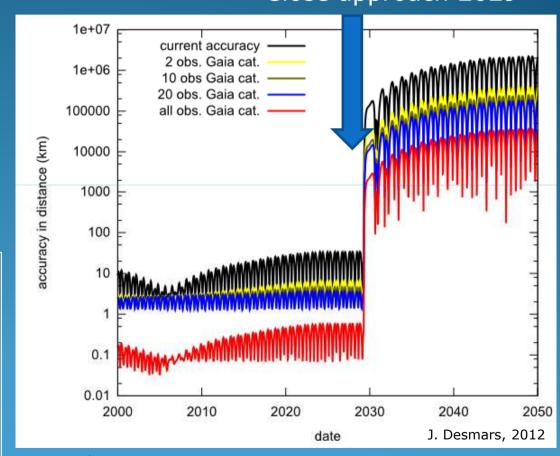
D. Bancelin (2011, Phd Thesis)

- Simulation of re-reduction with the Gaia catalogue (50 mas)
- \triangleright improvement of uncertainty by 10 (a, e, Ω , M) and 100 (i)


	without	with Gaia cat.
a [UA]	1.3×10^{-08}	1.3×10^{-09}
e	5.7×10^{-08}	4.9×10^{-09}
i [°]	1.8×10^{-06}	9.9×10^{-09}
Ω [°]	8.0×10^{-05}	3.9×10^{-06}
ω [°]	8.0×10^{-05}	3.9×10^{-06}
M [°]	5.5×10^{-05}	5.6×10^{-06}

D. Bancelin (2011, Phd Thesis)

- > Simulation of re-reduction with the Gaia catalogue (50 mas)
- > 2019 B-Plane of Apophis: uncertainty ellipse reduced by factor 10



Close approach 2029

- Accuracy in helioc. distance (km)
- Error propagation (covariance matrix techn.)
- NEODys obs (2004 to 2012)
- => nominal values

Simulation of re-reduction with the Gaia Catalogue (10 mas):

- ✓ All observations
- √20 (10 first and 10 last)
- √10 (5 first and 5 last)
- √2 (1st and last ones)

Strong improvement (/1000)

Thank you!

Acknowledgements: a part of this work was supported by the ESA contract ESA/22885/F/MOS/100409-R from European Space Agency

